
中文Bootcamp I
Reddio

Reddio_comDecember 2023

About Bootcamp
Onboarding devs to Starknet

Starknet Foundation Initiative

December course taught live

5 hours sessions

Chat, Q&A and Homework

Private Wechat channel

Community collaboration

About Bootcamp
Onboarding devs to Starknet

Starknet Foundation Initiative

December course taught live

5 hours sessions

Chat, Q&A and Homework

Private Wechat channel

Community collaboration

4

Tim

Smart Contract Engineer

1 year on Cairo.

3 years on Solidity.

Specialized in DeFi, NFT and Web3
security.

Twitter: @xyyme.eth

4

https://twitter.com/xyymeeth

5

Neil Han

Founder, Reddio

Envenglise StarkWare technologies for 2 years

NTU Blockchain Master Program, Guest lecturer

ex-Twilio, ex-PingCAP/TiDB

Twitter: @NeilHANYD

5

https://twitter.com/NeilHANYD

1) Starknet基本原理和生态 ⟵ you are here

2) Starknet 与 Cairo 开发初探

3) Cairo 合约的编写与部署

4) Cairo 组件的编写与使用

5) Starknet前端集成

The Sessions

6

Starknet基本原理和Starknet生态

中文Bootcamp I - Session 1

Reddio_comDecember 2023

1. Why StarkWare/zkRollup

2. Why Starknet

3. Why Cairo

4. Starknet生态

Agenda

8

Why StarkWare/zkRollup?

9

© 2022 REDDIO ALL RIGHTS RESERVED.

| Rollups

© 2022 REDDIO ALL RIGHTS RESERVED.

Data posted on the mainchain is the minimum
Each batch of executed transactions is bundled and is
posted on the mainchain
Validate the rollups transaction required
Much more secured

Pros.

A major limitation of Optimistic rollups is the
longer withdrawal time
Still in the middle of maturing for zkRollup

Cons.

© 2022 REDDIO ALL RIGHTS RESERVED.

| How does Rollups work

State root is updated on rollup contract when transactions are executed on the layer2Rollup contract on the mainchain contains state root of the layer2

© 2022 REDDIO ALL RIGHTS RESERVED.

Rollup Architecture Powering Next Generation Apps

© 2022 REDDIO ALL RIGHTS RESERVED.

Volition/Validium/zkRollup: StarkEx Powering Next Generation Apps

STATEMENT
total=$89.50

PROVER
Party producing
proof
(Restaurant owner)

VERIFIER
Party checking proof
(Customer)

1 Block fits ~ 1,800,000
NFTs

1 Block fits ~ 150
NFTs

“In this setup, a single reliable PC can monitor
the operation of a herd of supercomputers

working with possibly extremely powerful but
unreliable software and untested hardware”

STARK StarkWare (Est. 2018)
Mission
Integrity through Math

Pedigree
Invented ZK-STARK, FRI, Cairo,
SHARP, Validium, Volition, Layer 3...

$260+M
Funding (equity + EF grant)

100+
Team members

Problem [1992]: Not scalable; Not enough
atoms in solar system to write a proof

Eureka I [2005]: Scalable, barely enough
atoms in solar system to write a proof

Eureka II [2018]: enough atoms on laptop to
write a proof!

STARK vs SNARK

SNARKSTARK

Proof Size 288 b~400 KB

Verification constantlog2(n)

Proving Time 10x1x

Trusted Setup YesNo

Quantum Secure NoYes * Improved with proof recursion

What about Proof Size?

© 2022 REDDIO ALL RIGHTS RESERVED.

Volition/Validium: StarkEx Powering Next Generation Apps

© 2022 REDDIO ALL RIGHTS RESERVED.

Main content and supporting textDaily Transactions: Ethereum & L2s vs Bitcoin & Lightning

© 2022 REDDIO ALL RIGHTS RESERVED.

19

What is StarkNet?
A Decentralized Permissionless STARK-based Validity-Rollup,

offering scalable & secure Ethereum-like state

L2 SMART CONTRACTS GENERAL
COMPUTATION COMPOSABILITY

B

P

B

L2

L1

Txs

Prover

Verifier

Miner

Sequencer STARK Proof

StarkNet Enhances Ethereum

Txs

B
v

Cairo
The Language of StarkNet

B

P

B

L2

L1

Txs Miner

Sequencer Prover

Verifier

New Technology => New Language

Txs

 is a new language, compared to C, Python, Rust, …

But it’s the right language for Ethereum contracts

Likewise, is the right language for StarkNet contracts

Why? STARKs have different constraints

● Algebraic steps mod p are cheap

● Bitwise ops, Keccaks, etc. are expensive

New Technology => New Language

Vitalik's zk-EVM Classification

Type 2 Storage data structure High Slow -

Type 3 Storage, hashes, precompiles Partial Fast Kakarot, zkSync, Scroll,
Polygon zkEVM

Type 4 Completely different VM None Very Fast
Starknet,

Polygon Miden

Type I Nothing Full Very Slow -

Compatibility*EVM Changes Performance** Projects

*how feasible it is to execute an Ethereum smart contract without any change
**how much time and resources does it take to create a validity proof

struct Rectangle {
 height: u64,
 width: u64,
}

Custom data types

Scalar types

trait ShapeGeometry {
 fn boundary(self: Rectangle) -> u64;
 fn area(self: Rectangle) -> u64;
}

Functionality blueprint

Method signature

impl RectangleGeometry of ShapeGeometry {
 fn boundary(self: Rectangle) -> u64 {
 2 * (self.height + self.width)
 }
 fn area(self: Rectangle) -> u64 {
 self.height * self.width
 }
}

Implementations have names

Method implementation

#[starknet::contract]
mod SimpleStorage {

}

Metaprogramming

Smart contract state

 #[external(v0)]
 impl SimpleStorage of super::ISimpleStorage<ContractState> {
 fn set(ref self: ContractState, x: u128) {
 self.stored_data.write(x);
 }
 fn get(self: @ContractState) -> u128 {
 self.stored_data.read()
 }
 }

Interface implementation
Public methods

Writes to storage

Reads from storage

 #[storage]
 struct Storage {
 stored_data: u128
 }

#[starknet::interface]
trait ISimpleStorage<TContractState> {
 fn set(ref self: TContractState, x: u128);
 fn get(self: @TContractState) -> u128;
}

Contract’s interface

Reference => Modifies state
Snapshot => Read-only

Creates provable programs

Runs on top of CairoVM

Syntax inspired by Rust

Similar ownership model

Strongly typed

Can be used outside of Starknet

No need to know ZK!

Cairo’s Features

27

Creates provable programs

Proof of computational integrity

Verification without re-execution

Powerful & flexible language

Prevents cheating and malfunction

Keeps a supercomputer honest

Summary
Why Cairo?

28

Mainnet Performance
Stats from Voyager block explorer

47.29 TPS with multicall!

https://voyager.online/analytics?page=transactions

Optimized for ZK tech

↑ computing power ↓ gas fees

Secured by STARKs + Ethereum

Powerful programming language

Battled tested tech stack (2y | $1T)

Withdraw assets to L1 in ~10h

No trusted setup

Summary
Why Starknet?

Voting Virtual Identity Defi Gaming

Foundation

Company

L2 Validium
(permissioned)

L2 Rollup
(permissionless)

Non-profit
organization

Starknet Ecosystem

Reddio_comOctober 2023

Reddio_comOctober 2023

Sequencers
 Call for Contributors

The entity in charge of:

- Aggregating transactions
- Processing transactions
- Producing blocks

Similar to validators in Ethereum

Currently there’s only one

High liveness requirements

Provers

The entity in charge of:

- Receiving blocks
- Processing them
- Generating a proof for their

correct processing
- Sending it to Ethereum

High machine requirements, but

- Can be split into smaller proofs
- Can be done asynchronously

Nodes

Entities that keep track of the latest
state of Starknet

They can do so by:

- Replaying transactions
- Relying on L2 consensus
- Checking proof validations on L1

Each setup has pros and cons

- Hardware requirements
- Trust assumptions
- Latency

L2 and L3
● Recursive proofs open up surprising

and novel design options
● Introducing L3, the

application-specific layer, built
recursively over L2

● L3 serves the bespoke needs of
apps, such as hyper-scalability,
better control of the tech stack, and
privacy

● StarkEx, currently serving customers
as an L2 solution, will be ported to L3

● Standalone instances of StarkNet will
also be available as L3

L3s - Madara

Madara is an open source project
aiming to create an easy to use
Starknet compatible sequencer

It will allow anyone to spin up their
own Starknet network

These will be proven on L1, or L2, or
elsewhere

L2s/L3s - Kakarot

Kakarot is an open source ZKevm built
in Cairo

It is a set of Cairo smart contracts that
operate by interpreting Solidity smart
contracts

It will operate as an L3 on top of
Starknet

非常感谢!
Reddio

Reddio_comDecember 2023

We cannot wait to see what you build!

Deep Dive

43

Released in 2020

Low level language

Steep learning curve

Failed txs not added to blocks

Sequencer not compensated

DoS vector

Cairo 0

44

Cairo Assembly
(CASM)

Cairo 0
Smart Contract

Validity Proof

only if execution
doesn't fail

compile

High level language

Compiles to Sierra

Safe Intermediate Representation

Decoupling of Cairo to CairoVM

Generates “Safe CASM”

Allows for failed txs to be “reverted”

Sequencer ALWAYS compensated

No more DoS vector

Cairo

45

Safe CASM

Cairo
Smart Contract

Validity Proof

always
generates

Sierra

compile

compile

Back to our story…

Your Country Rival Country

execute

result
+

proof

46

The Internal Modules

47

Laptop

Your Country Rival Country

Supercomputer

Cairo Program

Sierra

compile

Verifier
validity proof

Prover

trace

CASM

compile

CairoVM

run

Sierra
send

result

Starknet Modules

48

Laptop

Starknet

Sequencer

Cairo Program

Sierra

compile

Sierra

Ethereum

Verifier
validity proof

CASM

CairoVM

SHARP

Prover

trace

compile

run

declare

result

You

49

Zooming Out

Ethereum

Verifier

validity
proof

Starknet
Core

state diff

Prover
(SHARP)

execution
traceSequencer

(Starknet OS)

tx

tx

tx

sync from L1

Full Node

get latest block

Starknet Components

Sequencer: Validates, executes and
bundle txs into blocks

SHARP: Creates validity proofs for
Starknet and StarkEx

Verifier: L1 smart contract that verifies
validity proofs from SHARP

Starknet Core: L1 smart contract that
store changes to L2 global state (DA)

Full Node: Provide data to L2 dapps

50

Declaring vs Deploying
Declaring registers Sierra code on L2

Declared code is aka “contract class”

Contract classes don’t have internal storage

Used as libraries and “blueprints”

From blueprint an instance can be deployed

Contract istances have internal storage

Every instance has a different address

51

Contract Class
(Sierra) class hash

Contract Instance
(CASM)

address A

Contract Instance
(CASM)

address B

Contract Instance
(CASM)

address C

co
ns

tr
uc

to
r c

al
le

d

Transaction Types

52

deploy_account
● Deploys an account contract

declare
● Registers the Sierra code of a SC

invoke
● Executes “write” functions
● Modifies the global state
● Requires paying gas fees

Calling a read-only functions is not a
transaction as it doesn’t modify the

global state (no gas fees)

No deploy
transaction?

Smart contract that deploys other smart
contracts

Only one selector: deployContract

Selector must be invoked with:
● Blueprint’s class hash
● Constructor arguments

Internally uses the deploy syscall

Created by OZ as a public good

Written in Cairo0
53

Universal Deployer

Starknet

Smart Contract Classes vs Instances

54

declare
tx

Smart
Contract

Class

Universal
Deployer

deploy

invoke
tx

Smart
Contract

Class

Smart Contract

library call

invoke/call tx

declare
tx

constructor
arguments

Smart
Contract
Instance

Cairo compiles to Sierra

Sierra allows the creation of safe CASM

Starknet nodes:
● L2: Sequencer, Prover, Full Nodes
● L1: Verifier, Starknet Core

Declare vs Deploy => Class vs Instance

Tx types: deploy_account, declare and
invoke (call is free)

Deploy ⇒ Invoke Universal Deployer

Summary
Deep Dive

55

