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Introduction
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In this document we discuss Nightfall - an open source suite of tools designed to enable private token transactions
over the public Ethereum blockchain.

Nightfall is currently compatible with smart contracts which adhere to either of Ethereum’s ERC-20 or ERC-721 token
standards. These token standards have been chosen because of their prevalence in the Ethereum community today.
Nightfall could indeed be expanded in the future to support other token standards.

ERC-20 tokens are fungible in the sense that they can be subdivided and individual units are interchangeable.
ERC-721 tokens are non-fungible in the sense that they represent something unique.

Nightfall was created by EY and released into the public domain in May 2019.

1 zk-SNARKs

1.1 High-level motivation and intuition

zk-SNARKs enable a ‘Prover’ to prove to everyone that they have correctly performed a calculation on a particular set
of inputs, without revealing some of those inputs.

This is useful in the context of privately transacting on a public blockchain. In a ‘traditional’ (non-private, ERC-
20) blockchain transfer, computations to update a sender and receiver’s balances are performed publicly ‘on-chain’ within
the transfer function of a smart contract. This public transfer function requires the to, and amount values to be
publicly input into the calculation (fig. 1).

1
2 /**

3 * @dev Transfer token for a specified address

4 * @param _to The address to transfer to.

5 * @param _value The amount to be transferred.

6 */

7 function _transfer(address _to , uint256 _value) internal returns (bool) {

8 require(_value <= balances[msg.sender ]);

9 require(_to != address(0));

10
11 balances[msg.sender] = balances[msg.sender ].sub(_value);

12 balances[_to] = balances[_to].add(_value);

13 emit Transfer(msg.sender , _to , _value);

14 return true;

15 }

Figure 1: An implementation of the ERC-20 ‘transfer’ function

For a transfer to be considered ‘private’, we will need these to and amount values to be kept private from the blockchain.
This is quite difficult to achieve, because for any ‘traditional’ computation within a smart contract, any values which are
used within a calculation must necessarily be made public in order for all nodes to agree on the new states of the smart
contract.

It therefore follows that we need to radically re-think the computations which are performed on-chain, in order to
hide the inputs to a transfer. We will also need to re-think how ‘ownership’ is ascribed to tokens. Whereas in a
traditional ERC-20 contract, the balances of each Ethereum address are public mappings, we cannot have this. We need
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to hide each user’s public key.

By using zk-SNARKs, we can keep the to and amount inputs private between the sender and receiver. The sender
(or ‘Prover’) runs a slightly different computation privately on their own computer. They pass private inputs into this
computation and get a set of public outputs which they will share with the blockchain. These public outputs will appear
as unreadable encrypted values to all observers; only the sender and receiver will be able to interpret their full meaning.
In order for these encrypted values to have ‘meaning’ to all observers, the Prover also shares with the blockchain a
corresponding ‘proof’ of having correctly computed these outputs. Together this proof and these public outputs can be
verified in such a way that everyone will be convinced that a pre-agreed calculation has been performed on a particular
set of private inputs to produce the public outputs. In this case, the pre-agreed calculation represents a ‘transfer’, and
verification of the proof and public outputs can be unambiguously interpreted by observers as “somebody has submitted
a binding intention to transfer funds to someone else”.

For full details on what the Prover computes, and what public outputs they submit to the blockchain, see The Protocols.

1.2 Technical explanation

Nightfall ‘stands on the shoulders of giants’ in that it leverages the impressive mathematics of zk-SNARKs to achieve
privacy. In this paper, we will not dive into the details of how zk-SNARKs work, as others have crafted brilliant
explanations already. It may take readers a long time to fully understand why a ‘proof’ and its corresponding ‘public
inputs’ (together forming a ‘zk-SNARK’) serve to convince observers that a Prover “must have known” a unique set of
private inputs in order to produce a particular zk-SNARK.

We encourage readers to take their time to understand zk-SNARKs, as it will make it much easier for them to contribute
to Nightfall. Although if you’re happy to ‘skim over’ how and why a (proof, public inputs) pair will convince observers
that the Prover knows something, then by all means move on to the next section.

Where to look?

Ordering is from easy-reading to advanced-reading. Careful not to go down a hyperlink rabbit-hole too quickly!

Zcash – What are zk-SNARKs?
Vitalik – zk-SNARKS: Under the Hood
Zcash – Explaining SNARKs - Parts 1 to 7
Christian Reitwiessner – zkSNARKs in a nutshell
PGHR13 – zk-SNARKs origins
BCTV13 – zk-SNARKs (see p25 for a nice summary of PGHR13)
GM17 – zk-SNARKs - Nightfall leverages this protocol

SECURITY WARNINGS

– The security of zk-SNARKs rests, in part, on the ‘Knowledge of Exponent’ assumption. This is a fairly new
assumption in cryptography, and because it is an assumption, it might not be true. For our purposes, a
consequence of the assumption is that “we think it is computationally infeasible for someone to generate a
valid proof of a particular computation, unless they know a valid set of public and private inputs”.

Figure 2: Security warning: ZoKrates versioning
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2 ZoKrates

Nightfall uses ZoKrates to generate zk-SNARKs.

If you spent time delving into the details of zk-SNARKs in the previous section, you’ll have seen that in order for a
Prover to ‘prove’ that they have performed a particular computation, they must convert that computation into an abstract
‘proof’. Ideally, the computation would start life as human-readable code, before being abstracted repeatedly: into a set of
arithmetic constraints, and then into a problem involving polynomials, and finally into (proving key, verification key) pair.

ZoKrates gives us a domain specific language (DSL) through which we can express our computations in a human-
readable way. ZoKrates then performs all of the complicated abstractions into zk-SNARKs behind the scenes.

In all, ZoKrates assists Nightfall with the following:

– A human-readable language for writing code (computations) which can be turned into a zk-SNARK;
– Compilation of human-readable code into constraints;
– Generation of a (verification key, proving key) pair, which together represent the constraints;
– Computation of a ‘witness’. A Prover can feed their private inputs and public inputs into ZoKrates, and ZoKrates

will produce a ‘witness’ – a step-by-step vector of evidence that each constraint has been satisfied by these inputs.
– Generation of a ‘proof’ – This, combined with the public inputs, is the attestation that the constraints of the

computation have been satisfied.

2.1 ZoKrates JavaScript Wrapper

Nightfall includes a JavaScript wrapper for each of the ZoKrates functions:

– compile;
– setup;
– compute-witness;
– generate-proof;
– export-verifier.

Nightfall uses the ‘GM17’ backend of ZoKrates for all of these steps. Nightfall does not currently support the ‘PGHR13’
backend, because our tests showed that a GM17 proof is around 30% cheaper to verify on-chain that its PGHR13
equivalent. The trade-off here is that GM17 proving keys (stored off-chain on users’ hard-drives) are larger, and the
‘compute-witness’ and ‘generate-proof’ steps take longer than for ‘PGHR13’.
Nightfall could easily be adapted to also support PGHR13 (and indeed it once did back when it was a proof of concept).

The ZoKrates JavaScript wrapper:

– Uses a Docker Image of ZoKrates from January 2019;
– Performs a Trusted Setup:

– Mounts ‘.code’ files into a ZoKrates container;

– Compiles this code into contraints;

– Performs the ‘trusted setup’ to output a ‘proving key’ and a ‘verification key’

– Outputs this ‘proving key’ and ‘verification key’ into the mounter directory of the user’s local machine;

– Jsonifies the ‘verification key’.

– Generates proofs:

– Generates a proof for a particular set of public and private inputs (passed from the UI):

– Extracts the proof object from the container’s console (ready for use by the node.js application)

Nightfall doesn’t use the hard-coded verifier.sol contracts which are created by ZoKrates. Instead, Nightfall uses a
single verifier contract which can handle all GM17 verification keys, and all proof submissions against these verification
keys. This verifier contract (called GM17.sol) adheres to the draft EIP1922 standard.

Where to look?
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https://github.com/Zokrates/ZoKrates ZoKrates source code
https://zokrates.github.io ZoKrates documentation
./zkp/src/zokrates.js ZoKrates JavaScript Wrapper
./zkp/code/gm17/ .pcode files
./zkp/code/README-tools-code-preprop.md explanation of .pcode syntax
./zkp/code/README-tools-trusted-setup.md how to automatically do the trusted setup
https://github.com/EYBlockchain/zokrates-preprocessor how to manually transpile from .pcode to .code

./zkp/code/README-manual-trusted-setup.md how to manually do the trusted setup

./zkp/contracts/GM17.sol for the EIP1922 Verifier contract.
http://eips.ethereum.org/EIPS/eip-1922 for the draft zk-SNARK Verifier Standard.

SECURITY WARNINGS

– The Docker Image of ZoKrates from January 2019 is already outdated. It might include security bugs which
have since been fixed over in the ZoKrates repository. The syntax of the ZoKrates DSL has also changed
considerably since January 2019, and therefore the .pcode files of Nightfall are written in outdated syntax.

Figure 3: Security warning: ZoKrates versioning
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3 Trusted Setup

A trusted setup is required before anyone can generate a zk-SNARK (‘proof’) for a particular computation. In Nightfall,
there are currently six separate computations for which a trusted setup is required: non-fungible minting, transferring
and burning; and fungible minting, transferring and burning.

For a given computation, the trusted setup is only performed once; at “the beginning of time”; by a generous trusted
benefactor; and before the Shield contract can be deployed to the Ethereum blockchain for people to use.

The trusted setup abstracts the human-readable code of the ZoKrates DSL (files with a .code or .pcode extension)
into a (proving key, verification key) pair.

Suppose Tom is a ‘trusted benefactor’ who intends to use Nightfall to set up the infrastructure which will allow anyone
to transfer ownership of tokens under zero knowledge.

When Tom first clones the Nightfall repository, he only has human-readable computations written in ‘.pcode’ syntax.
Taking the ./zkp/code/gm17/nft-mint/ folder as an example, Tom will initially only have:

Figure 4: Files in Tom’s local repository before performing a trusted setup

The trusted setup will provide Tom with the following:

Figure 5: Files in Tom’s local repository after performing a trusted setup

nft-mint-vk.json

The verification key for an ‘nft-mint’. This will be stored on-chain, within the Verifier Registry. Every User who submits
a (proof, public inputs) pair to the Shield contract will have this pair verified against this verification key within the
Verifier contract.
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nft-mint.code

Human-readable computation for an ‘nft-mint’, written in the DSL of ZoKrates.

nft-mint.pcode

An abbreviation of the .code syntax, for easier writing.

out

Ignore.

out.code

Ignore.

proving.key

This file is used to generate proofs. Every time a User generates a new proof, this file is used by ZoKrates. The proving
keys are by far the largest files required by Users of Nightfall:

nft-mint 77 MB
nft-transfer 1.1 GB
nft-burn 1.0 GB
ft-mint 77 MB
ft-transfer 2.1 GB
ft-burn 1.0 GB

The ‘transfer’ and ‘burn’ proving keys are particularly large, because of how a User proves that their token commitment
exists as a leaf of the on-chain Merkle Tree (see The Protocols). As a default size, the on-chain Merkle Tree is 33-deep,
meaning 32 sha256 hashes are performed to calculate the root of the Merkle Tree from the relevant leaf. Each sha256
hash requires around 25, 000 constraints. For a fungible transfer, 64 sha256 hashes are performed (2x32).

variables.inf

Ignore.

verification.key

A representation of the verification key. Nightfall uses the jsonified version of the verification key (mint-nft-vk.json)
and submits it as a flattened array to the Verifier Registry.

verifier.sol

Ignore. An example implementation of a verifier contract, with the verification key hard-coded into it.
Nightfall doesn’t use the hard-coded verifier.sol contracts which are created by ZoKrates. Instead, Nightfall uses a
single verifier contract which can handle all GM17 verification keys, and all proof submissions against these verification
keys. This verifier contract (called GM17.sol) adheres to the draft EIP1922 standard.

Once Tom has completed the trusted setup for each of the six computations, he is ready to create the rest of the
Nightfall infrastructure.

We outline his steps below. If you’re unfamiliar with the Smart Contracts being alluded to below, see the Smart
Contracts section.
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Deploying the Nightfall Infrastructure

Tom steps:

1. Perform the ‘Trusted Setup’ to produce the proving key and the verification key for each of the six
computations.

2. Share the proving keys with the world (e.g. through an online sharing service). Do not share the
proving keys on a blockchain; they’re way too big!

3. Locate the Verifier Registry contract’s address on the Ethereum mainnet. We intend there to only
be one Verifier Registry on the mainnet for all zk-SNARK traffic; in much the same way as the ENS
registers all .eth domain names. Note, however, that the default migration scripts of the Nightfall
repository do deploy an instance of a Verifier Registry, for example’s sake.

4. Either:

• Locate a GM17 verifier contract address on the Ethereum mainnet; or

• Deploy an instance of the GM17 verifier contract to the Ethereum mainnet. And register this
GM17 verifier contract with the Verifier Registry (see ./zkp/src/vk-controller.js which
does this in the Nightfall repository).

5. Choose which ERC-20 token you wish for your new infrastructure to ‘shield’.

6. Deploy an instance of the FTokenShield.sol contract to the Ethereum mainnet; specifying the
addresses of the chosen GM17 verifier contract and chosen the ERC-20 contract, in the constructor
of FTokenShield.sol.

7. Choose which ERC-721 token you wish for your new infrastructure to ‘shield’.

8. Deploy an instance of the NFTokenShield.sol contract to the Ethereum mainnet; specifying
the addresses of the chosen GM17 verifier contract and chosen the ERC-721 contract, in the
constructor of NFTokenShield.sol.

9. Store all six verification keys in the Verifier Registry. (See ./zkp/src/vk-controller.js which
does this in the Nightfall repository). You will receive six ‘vkId’ values from the Verifier Registry
in return. These are unique identifiers for the six verification keys.

10. Share the six ‘vkId’ values with the world; (e.g. through the same online sharing service as
the proving keys). It must be clear to Users which vkId corresponds to which proving key.
./zkp/src/vkIds.json gives an example of how to store these.

11. Share the Ethereum addresses of the FtokenShield.sol and NFTokenShield.sol contracts.

User steps:

12. Download each proving key and its corresponding vkId from Tom’s online sharing portal.

13. Generate a (proof, inputs) pair, as explained in The Protocols.

14. Submit the (proof, inputs) pair to the relevant Shield contract.

E.g., using web3: nfTokenShield.mint(proof, inputs, vkId)

15. Store relevant data in local database.

Figure 6: Deploying the Nightfall Infrastructure

Notes for a User

Ordinary Users of a Nightfall infrastructire do not need to (and should not!) perform a trusted setup themselves. Only
the original creator of the Shield contracts (Tom) needs to.

Since the trusted setup involves a source of randomness, the (proving key, verification key) pair for a given computation
will change each time the trusted setup is performed.
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Therefore, if a User wishes to generate ’proofs’ (zk-SNARKs) to be verified against a verification key which has already
been stored on the Ethereum mainnet, they should use the exact proving key and vkId which was generated by Tom and
shared with everyone.

Why? Because for each verification key stored on-chain, there is a corresponding and unique proving key which was
generated at the same time, from the same randomness. It is this proving key which Users must use to generate proofs;
otherwise a User’s proofs will not verify against the verification key which has already been stored on-chain.

If a User wishes to generate a proof against an existing, already-deployed verification key, they will need to request
the corresponding proving key from the creator of the verification key (Tom).

SECURITY WARNINGS

– Performing the initial ’trusted setup’ of a computation – to convert a .code file into a (proving key, verification
key) pair – requires the generation of some random numbers.

Once the (proving key, verification key) pair has been generated from the .code file, these random
numbers MUST be destroyed. These random numbers MUST never be stored by the party who performed
the trusted setup, or that party would be able to generate false proofs which verify as true. These random
numbers are often referred to as ‘toxic waste’.

Nightfall leverages ZoKrates to perform the trusted setup, and relies on the proper management of the
toxic waste by ZoKrates.

A criticism of zk-SNARKs is that future users of a (proving key, verification key) pair, will have to
trust that the party who performed the trusted setup (at the ‘beginning of time’) did so properly and
truthfully.

Figure 7: Security warning: Toxic Waste

Where to look?

./zkp/code/gm17/nft-mint/nft-mint.pcode .pcode files with human-readable computations.

./zkp/code/gm17/nft-mint/nft-transfer.pcode

./zkp/code/gm17/nft-mint/nft-burn.pcode

./zkp/code/gm17/nft-mint/ft-mint.pcode

./zkp/code/gm17/nft-mint/ft-transfer.pcode

./zkp/code/gm17/nft-mint/ft-burn.pcode

./zkp/code/README-tools-trusted-setup.md README for automating the trusted setup.

./zkp/code/README-manual-trusted-setup.md README for manually performing the trusted setup.
https://github.com/Zokrates/ZoKrates ZoKrates source code
https://zokrates.github.io ZoKrates documentation
./zkp/code/README-tools-code-preprop.md explanation of .pcode syntax
https://github.com/EYBlockchain/zokrates-preprocessor how to manually transpile from .pcode to .code

./zkp/code/README-manual-trusted-setup.md how to manually do the trusted setup
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4 Smart Contracts
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4.3.2 Points.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.3 GM17Library.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.4 Pairing.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.4 Verifier Registry contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4.1 Verifier Registry Interface.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4.2 Verifier Registry.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Summary of important new contracts:

• Shield contract - stores ‘token commitments’ which represent ownership of underlying ERC-20 or ERC-721 tokens,
and facilitates the minting, transferring and burning of these token commitments.

• Verifier Contract - uses elliptic curve pairing functions to verify a zk-SNARK.

• Verifier Registry Contract - a registry of Verifier Contracts, Verification Keys, and Proof submissions. For simplicity,
we ignore this layer from our explanations in this paper; although it is utilised in the Nightfall repository.

Here, we give further details of all Solidity contracts, libraries and interfaces in the Nightfall repository:

4.1 Familiar contracts

4.1.1 ERC-721

The structuring of the ERC-721 contracts is aligned with the https://0xcert.org implementation.

ERC721Interface.sol

ERC721TokenReceiver.sol

ERC721Metadata.sol

NFTokenMetadata.sol – an example metadata implementation, to accompany NFToken.sol.

NFToken.sol – an example ERC-721 implementation.

4.1.2 ERC-20

The structuring of the ERC-20 contracts is aligned with the https://openzeppelin.org implementation.

ERC20Interface.sol

FToken.sol – an example ERC-20 implementation.
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4.1.3 ERC-165

The structuring of the ERC-165 contracts is aligned with the https://0xcert.org implementation.

ERC165Interface.sol

SupportsInterface.sol

4.1.4 Utility contracts

AddressUtils.sol – See https://ethereum.stackexchange.com/a/14016/36603 for more details about how this works.

SafeMath.sol – for safe mathematical operations.

4.2 Shield contracts

4.2.1 FTokenShield.sol

Facilitates private transfers of Fungible Tokens.

Constructor: At deployment, specify one Verifier contract (see below) and one ERC-20 contract. FTokenShield will
then be able to hold tokens of the ERC-20 contract in escrow, whilst the private counterparts of these tokens are
transferred. Future contributions to Nightfall will produce an FTokenShield contract which can handle multiple ERC-20
contracts at once.

Stores token commitments, which represent ownership of a particular amount of currency, as denominated in the specified
ERC-20 contract.

Calls upon the Verifier contract to verify zk-SNARKs for it.

4.2.2 NFTokenShield.sol

Facilitates private transfers of Non-Fungible Tokens.

Constructor: At deployment, specify one Verifier contract (see below) and one ERC-721 contract. NFTokenShield
will then be able to hold tokens of the ERC-721 contract in escrow, whilst the private counterparts of these tokens
are transferred. Future contributions to Nightfall will produce an NFTokenShield contract which can handle multiple
ERC-721 contracts at once.

Stores token commitments, which represent ownership of a token of the specified ERC-721 contract.

Calls upon the Verifier contract to verify zk-SNARKs for it.

4.3 Verifier contracts

The sole purpose of a verifier contract is to verify zk-SNARKs which are passed to it. It returns true if the (proof, public
inputs) pair verifies. Otherwise, it returns false.

4.3.1 GM17.sol

An implementation of the draft EIP-1922 zk-SNARK Verifier Standard.

4.3.2 Points.sol

Library. Defines how Elliptic Curve coordinates (x, y) are structured.

4.3.3 GM17Library.sol

Library. Defines the structures of both a Verification Key and a Proof under the GM17 protocol (using the elliptic curve
points of Points.sol).

4.3.4 Pairing.sol

Library. Performs elliptic curve operations and elliptic curve pairing operations. Utilises the precompiled contracts of
EIP-196 and EIP-197.
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4.4 Verifier Registry contracts

The Verifier Registry is intended to be a single contract to register all zk-SNARK traffic on the Ethereum mainnet. It
facilitates:

– Registration of Verifier contracts

– Storage of all Verification Keys

– Proof submissions

– Other zk-SNARK use-cases beyond Nightfall

Note: although the intention is for there to be just one Verifier Registry on the Ethereum mainnet, the default
migration script in the Nightfall repository deploys an implementation of the Verifier Registry along with all other
contracts – for the sake of example.

4.4.1 Verifier Registry Interface.sol

The draft EIP-1923 interface for a Verifier Registry.

4.4.2 Verifier Registry.sol

An implementation of the Verifier Registry Interface.

4.4.3 Verifier Register Interface.sol

Library. Defines the structures of the register, which store entries to the Verifier Registry.

4.5 Deployment of Contracts

See Trusted Setup for an explanation of deployment steps, and how contract deployment is intertwined with the zk-
SNARK trusted setup.

Where to look?

./zkp/contracts/ Contracts in Nightfall

./zkp/migrations/ Default deployment ordering of contracts in Nightfall
http://eips.ethereum.org/EIPS/eip-165 EIP-165
http://eips.ethereum.org/EIPS/eip-20 EIP-20
http://eips.ethereum.org/EIPS/eip-721 EIP-721
http://eips.ethereum.org/EIPS/eip-196 EIP-196
http://eips.ethereum.org/EIPS/eip-197 EIP-197
http://eips.ethereum.org/EIPS/eip-1922 EIP-1922
http://eips.ethereum.org/EIPS/eip-1923 EIP-1923
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5 Microservices
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5.2.1 whisper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2.2 pkd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.3 accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.4 database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5 ui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 zkp

5.1.1 f-token-controller.js

Functions to orchestrate mint, transfer, and burn of fungible token commitments.

– Receives public inputs from the front end;

– Calculates the public inputs of each zk-SNARK;

– Calls zokrates.js – the ZoKrates JS wrapper – to compute a witness and to generate a proof.

– Calls f-token-zkp.js – a web3 transactions module which sends transactions to relevant smart contracts.

5.1.2 f-token-zkp.js

Functions to send transactions (relating to fungible commitments) to the smart contracts. Using web3, this js module
sends transactions to FTokenshield, GM17, and Verifier Registry.

5.1.3 nf-token-controller.js

Functions to orchestrate mint, transfer, and burn of non-fungible token commitments.

– Receives public inputs from the front end;

– Calculates the public inputs of each zk-SNARK;

– Calls zokrates.js – the ZoKrates JS wrapper – to compute a witness and to generate a proof.

– Calls nf-token-zkp.js – a web3 transactions module which sends transactions to the NFTokenShield contract.

5.1.4 nf-token-zkp.js

Functions to send transactions (relating to non-fungible commitments) to the smart contracts. Using web3, this js module
sends transactions to NFTokenshield, GM17, and Verifier Registry.

5.1.5 zokrates.js

JS wrapper functions for executing ZoKrates commands within a ZoKrates container. See ZoKrates.

5.1.6 vk-controller.js

Functions to send verification keys to the Verifier Registry contract. See Trusted Setup for context.
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5.1.7 vkIds.json

JSON file which stores the vkId’s for each of the six zk-SNARK computations (fungible mint, transfer and burn; and
non-fungible mint, transfer and burn).
At the time the verification keys are deployed to the Verifier Registry, it returns a unique vkId for each verification
key. vkIds.json also stores the Ethereum address of the smart contract to which the verification keys were submitted.
See Trusted Setup for context.

5.1.8 stats.json

JSON file which stores – for each of the six zk-SNARK computations – the time it took to ‘compute-witness’ and
‘generate-proof’ within the ZoKrates container on the User’s computer. These time statistics serve as ‘ETA’ estimates
for the next time the User generates a proof (and the command line displays a progress bar accordingly).

Where to look?

./zkp/ The zkp microservice

5.2 offchain

5.2.1 whisper

Where to look?

https://github.com/ethereum/wiki/wiki/Whisper Whisper GitHub.
https://web3js.readthedocs.io/en/1.0/web3-shh.html web3 for whisper
./offchain/whisper-controller-stub.js A whisper js wrapper for Ganache
./offchain/whisper-controller.js A whisper js wrapper for Geth
./offchain/listners.js Listens for messages on behalf of the user.

Decrypts relevant messages.
Forwards the data to the relevant microservice to
take action.
E.g. to store new data in the database.

LIMITATION

The whisper-controller.js and The whisper-controller-stub.js only listen for Whisper events (via
the ‘subscribe’ methods) when the user is logged into the Application.

If a user logs out, they will miss any incoming Whisper messages. E.g. Bob might not receive notification
from Alice that he has been sent a commitment, and will not receive details of the preimage of the commitment,
nor the location of the commitment within the on-chain Merkle Tree.

This can be solved with future contributions to the Nightfall repository. Indeed, web3.shh includes the
functionality to retrieve past messages already.

Figure 8: Privacy warning: A future update is required to Nightfall to allow user’s to reliably and consistently transact
with the Shield contract anonymously.

5.2.2 pkd

Nightfall uses a PKD (Public Key Directory) contract to allow users to lookup both ZKP public keys and Whisper public
keys. See The Protocols for a disambiguation of the different public keys used in Nightfall. The public keys of a user can
be retrieved with knowledge of their Ethereum Address.

The PKD also serves as a simple Name Service; users can register a unique name with the PKD. With this, the public
keys of a user can also be retrieved with knowledge of their unique name.

An example usage of the PKD is:
If Bob wishes to ask Alice to send him an ERC-721 commitment under zero-knowledge: Bob can query Alice’s Whisper
public key from the PKD, and Alice can then query Bob’s ZKP public key from the PKD.
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5.3 accounts

The ‘accounts’ microservice manages a User’s Ethereum accounts. (We use the terms Ethereum ‘address’ and Ethereum
‘account’ interchangeably).

For a user, Alice, her anonymity is preserved by using a new ‘throwaway’ Ethereum address each time she transacts
with the Shield contract.

This microservice generates new Ethereum accounts, and keeps track of them for the application.

“But how would Alice pay for the gas costs of sending such a transaction to the Shield contract?”

She would have to pay for the verification computation of her zk-SNARK, and for the persistent storage of the public
inputs to her zk-SNARK. In order for Alice to fund a new Ethereum account completely anonymously, she would have
to mine Ether. This might not be a viable solution for some; as mining rewards can be unpredictable and could be
insufficient to cover the gas needed to transact using Nightfall.

Alternatively, Alice could make each transaction through a delegated third-party, who would send the ‘transfer’

transaction on Alice’s behalf. The initial release of Nightfall does not include functionality to delegate transactions
to others. Nevertheless, we know that in future updates we can solve the problem of hiding that “Alice transferred
something” so that observers only see that “someone transferred something”.

PRIVACY WARNING

The initial release of Nightfall does not give Alice full anonymity when she interacts with the Shield contract, unless
she mines into her anonymous Ethereum accounts.

Future updates will include the functionality to delegate transactions to others. This is a solved problem,
which just needs to be implemented.

Figure 9: Privacy warning: A future update is required to Nightfall to allow user’s to reliably and consistently transact
with the Shield contract anonymously.

Where to look?

./accounts/ The accounts microservice

5.4 database

Nightfall uses mongodb to store private data on a User’s local machine.

SECURITY WARNING

Currently, the ‘secret keys’ for spending token commitments are stored in a User’s ‘User’ db. This is not
particularly secure, and moderations might need to be made when creating production-ready applications.

Figure 10: Privacy warning: A future update is required to Nightfall to allow user’s to reliably and consistently transact
with the Shield contract anonymously.

Where to look?

./database/src/models/ All schemas.

5.5 ui

See the dedicated README for instructions on how to use the UI.
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SECURITY WARNING

Currently, random salt values (denoted σ in this document) are generated within the UI microservice, or
within the api-gateway microservice.

Ensure you’re comfortable with the level of randomness achieved by these random number generators.

Figure 11: Security warning: Ensure you’re comfortable with any random number generation in the application

Where to look?

./ui-src/ The UI microservice
UI.md A demonstration of the UI
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6 ERC-721 (non-fungible) tokens
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In this section we give an overview of using Nightfall to privately transact non-fungible tokens (nft’s). We cover three
key functions:

• Mint - create an initial ‘token commitment’; a private representation of a public ERC-721 token.

• Transfer - nullify the sender’s token commitment, and generate a new token commitment to represent ownership
by the recipient.

• Burn - nullify a token commitment, and receive the underlying public ERC-721 token.

6.1 Preliminaries
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6.1.1 Variables

Here we describe the variables used in this section.

A,B Participants Alice and Bob.

pkA The public key belonging to Alice.
skA The secret key belonging to Alice.

Note: there are several (secret key, public key) pairs in this protocol)

EA The Ethereum address of Alice.
ΞA,i An ‘anonymous’ Ethereum address belonging to Alice, where i ∈ N is an index, for

distinguishing between multiple anonymous addresses.

α A unique representation of some non-fungible asset e.g. a tokenId in ERC-721.
Note that in respect of non-fungible tokens, Nightfall currently focusses solely ERC-721
tokens. It would be relatively simple to adapt Nightfall’s application to deal with other
non-fungible token standards.

αA A non-fungible asset α that is in Alice’s possession.

σ A salt used to provide uniqueness to commitment preimages.
σ ~AB Stresses that a salt is being shared privately from Alice to Bob.

Z An ERC-721 commitment; a zero-knowledge commitment representing ownership of some
underlying ERC-721 asset.

ZA Stresses that an ERC-721 commitment belongs to Alice.
Zα Stresses that an ERC-721 commitment represents the asset α.
Zl Stresses that an ERC-721 commitment is the lth leaf of a Merkle Tree (see below for M).

Note that the meaning of these (seemingly colliding or ambiguous) subscripts will be clear
from context.

N A nullifier for an ERC-721 commitment Z.
NA A nullifier for the ERC-721 commitment ZA.
Nα A nullifier for the ERC-721 commitment Zα.

M A binary Merkle Tree.
Ml A binary Merkle Tree with l non-zero leaves (where leaves are populated in order ‘from left

to right’).
rootl The root of Ml (‘M ’ is omitted because context will be clear).

φL [φL(d− 1), φL(d− 2), ..., φL(1), φL(0)] - The path from a leaf L to the root of a Merkle Tree
M , where φL(0) = root.

φ [φd−1, φd−2, ..., φ1, φ0] - Alternative notation for the path from a leaf, where the leaf L is
clear from the context. φ0 = root.

ψL [ψL(d−1), ψL(d−2), ..., ψL(1), ψL(0)] - The sister-path from a leaf L to the root of a Merkle
Tree M , where ψL(0) = φL(0) = root.

ψ [ψd−1, ψd−2, ..., ψ1, ψ0] - Alternative notation for the sister-path from a leaf, where the leaf
L is clear from the context. ψ0 = root.

x Public inputs to a zk-SNARK.
ω Private inputs to a zk-SNARK.
C An arithmetic circuit C : (ω, x)→ {0, 1}.
pC A proving key for the circuit C. (Not to be confused with pk which denotes a public key).
vkC A verification key for the circuit C.
π(pC , x, ω) A proof for the circuit C, public inputs x, and private inputs ω
πC,x,ω An abbreviation of the above.
π An abbreviation of the above, when the context of the proof is clear.

h() A one-way hashing function. Nightfall currently uses sha256 hashing throughout.
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6.1.2 Key Management

There are several pairs of public and private keys to keep track of throughout these protocols. We provide a summary
here (for an actor Alice (A)):

Ownership of... Account symbol Private Key Public Key Notes

Ethereum address EA skEA pkEA Used for ‘mint’ and ‘burn’.

Anonymous Ethereum addresses ΞA,i skΞ
A,i pkΞ

A,i Used for ‘transfer’. i ∈ N.

Ethereum Whisper accounts WA,j skWA,j pkWA,j Used for private messaging. j ∈ N

ERC-721 commitment Zl Zl skZ,lA pkZ,lA Used to ‘mint’, ‘transfer’ and ‘burn’ Zl.

Hereafter, when we write skA and pkA we will be referring to skZ,lA and pkZ,lA respectively (where Zl is clear from context)
- unless otherwise stated.
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6.2 Mint

Suppose Alice wishes to be able to transfer ownership of an ERC-721 token under zero-knowledge, so that the following
become private:

1. All details of the ERC-721 token (the ‘asset’).

2. The identity of the sender of the token (‘Alice’).

3. The identity of the recipient of the token.

Figure 12: Privacy intentions: details we intend to keep private

In order to achieve this, Alice must first convert her ERC-721 token into a private ERC-721 commitment. We call this
act of conversion ‘minting’ an ERC-721 commitment.

In this section, we outline Nightfall’s protocol for minting an ERC-721 commitment, but first, an important privacy
warning:

PRIVACY WARNING

Privacy is NOT achieved during the minting stage!

Minting an ERC-721 commitment initially requires Alice to transfer her ERC-721 token to a ‘Shield’ contract
(which thereafter holds it in escrow). This transfer reveals the Ethereum address of the sender (Alice) as well as
the ERC-721 token itself. Therefore everyone will know the owner and the underlying asset being represented by
the initial ERC-721 commitment which is created at this ‘minting’ stage.

Only during subsequent ‘transfers’ of the new ERC-721 commitment, will we achieve the privacy intentions
of fig. 12

Figure 13: Privacy warning: minting alone does not achieve privacy

The ERC-721 standard allows many unique assets to be tokenised and represented by a unique tokenId within an ERC-
721 smart contract. Let α be the tokenId of some ERC-721 asset.

For Alice to mint a token commitment representing α, on the blockchain, under zero knowledge, she follows the steps in
fig 14:
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Non-fungible mint algorithm

Alice’s steps:

1. Generate a random salt σA.

2. Compute ZA := h( α | pkZA | σA ), a token commitment which represents α.

3. Set public inputs x = ( α, ZA )

4. Set private inputs ω = ( pkZA, σA )

5. Select Cnft−mint( ω, x ) – the set of constraints which are satisfied if and only if:

(a) ZA equals h( α | pkZA | σA ) (Proof that the commitment ZA hides the correct asset α)

6. Generate π := P ( pC , x, ω ); a proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.
Recall: pC – the proving key for C – will be stored on Alice’s computer.

The pair (π, x) is the zk-SNARK which attests to knowledge of private inputs ω without revealing
them.

7. Send (π, x) to the Shield contract for verification.

Using web3: nfTokenShield.mint(proof, inputs, vkId)

Shield contract’s steps:

8. Verify the proof as correct: call a Verifier contract to verify the (proof, inputs) pair against the
verification key represented by vkId.

Verifier contract’s steps:

9. Compute result = verify(proof, inputs, vkId).

I.e. Verify the (proof, inputs) pair against the verification key.

10. Return result∈{false, true} to the Shield contract.

Shield contract’s steps:

11. If result = false, revert.

12. Else:

(a) Transfer α (the ERC-721 token with tokenId = α), on behalf of Alice, to the Shield Contract.
I.e. store α in escrow.

(b) Add ZA to the next empty leaf of the Merkle Tree.

(c) Recalculate the path to the root of the Merkle Tree from ZA for future users.

Alice’s steps:

13. Store relevant data in local database, including the leafindex of ZA.

Figure 14: Non-Fungible Mint Algorithm
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6.2.1 Details

We refer to the numbered steps of fig 14.

Step 1
This is handled within the UI microservice (or within the api-gateway).

Steps 2− 4
These steps are handled within nf-token-controller.js.

Steps 5− 6
These steps are handled within a ZoKrates container.

Step 7
This transaction is handled within nf-token-zkp.js.

Steps 8− 10
The Verifier contract already has stored within it the object vkC (see Trusted Setup). It runs a verification function
V (vkC , π, x).

V : (vkC , πC,x,ω, x)→ {0, 1}

where:

V =

{
1, if πC,x,ω and x satisfy vkC

0, otherwise

Steps 11− 12
If the Verifier contract returns 1 (true) (verified) to the Shield contract, then the Shield contract will be satisfied with
Alice’s commitment, and will update its persistent states:

Suppose the Shield contract stores an ever-increasing array, Z, of all token commitments which have ever been submitted
by anyone.

Suppose, prior to Alice’s mint, there are n− 1 tokens in the tree:

Zn−1 = (Z0, Z1, ..., Zn−1)

The information held within Zn−1 may be represented by the root hash rootn−1 of a Merkle Tree Mn−1:

rootn−1 := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, 0), 0

))
, 0

)

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, 0), 0

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, 0), 0

)
h(Zn−1, 0)

Zn−1 0

0

0 0

0

0

0

0 0

0

0 0

0

0

0 0

0

0 0

Now that the Shield contract has been given verification that Alice’s commitment, ZA, does indeed hide the asset α, the
Shield contract will do the following:

• Append the commitment ZA to the ever-increasing array of tokens, Zn−1, so that Zn = (Z0, Z1, ...Zn−1, ZA)
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• Recalculate a Merkle Root rootn of Mn:

rootn := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, ZA), 0

))
, 0

)

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, ZA), 0

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, ZA), 0

)
h(Zn−1, ZA)

Zn−1 ZA

0

0 0

0

0

0

0 0

0

0 0

0

0

0 0

0

0 0

• Append rootn to an ever-increasing array roots = (root0, root1, ..., rootn−1, rootn)

Step 13
Alice will store all important information in her private database.
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6.3 Transfer

We continue with the notation and indices from the ‘Mint’ section.

Suppose Alice wishes to transfer ownership of the ERC-721 token with tokenId ‘α’ to Bob, but under zero-knowledge.

In the ‘Mint’ section, we saw how Alice can create an ‘ERC-721 commitment’ Zα within the Shield contract which:

• hides an underlying ERC-721 token with tokenId ‘α’; and

• hides and binds Alice as the owner of Zα (and hence of α) through an ownership keypair (skZA, pk
Z
A).

Recall our privacy intentions:
Alice wishes to be able to transfer ownership of an ERC-721 token under zero-knowledge, so that the following become
private:

1. All details of the ERC-721 token (the ‘asset’).

2. The identity of the sender of the token (‘Alice’).

3. The identity of the recipient of the token.

Figure 15: Privacy intentions: details we intend to keep private

Recall that minting a token commitment does not yet afford Alice any privacy (see the warning in fig 13). Only with
subsequent transfers will the whereabouts of α and the owner of α be hidden.

For Alice to transfer ownership of α within the Shield contract, under zero knowledge, she follows the steps in fig 16:
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Non-fungible transfer algorithm

Bob’s steps:

1. Before Alice can send him anything, Bob must register his public keys pkZB and pkWB against both
his public Ethereum address pkEB and his unique name ‘Bob’ within the PKD.

Alice’s steps:

2. Generate a random salt σ ~AB .

3. Lookup Bob’s ‘zkp’ public key pkZB from the PKD.

4. Compute ZB := h( α | pkZB | σ ~AB ), a token commitment which represents α.

5. Compute NA := h( σA | skZA ), the nullifier of Alice’s commitment ZA.

6. Get ψZA
– the sister-path of ZA – from the Shield contract (see Details below).

7. Get the latest Merkle root from the Shield contract: rootn+m−1 (see Details below).

8. Set public inputs x = ( NA, rootn+m−1, ZB)

9. Set private inputs ω = (α, ψZA
, skA, σA, pkB , σ ~AB)

10. Select Cnft−transfer( ω, x ) – the set of constraints which are satisfied if and only if:

(a) pkA equals h( skA ); (Proof of knowledge of the secret key to pkA) (see Details for why pkA
isn’t an input to C)

(b) ZA equals h( α | pkA | σA ) (Proof of the constituent values of ZA) (see Details for why ZA
isn’t an input to C)

(c) rootn+m−1 equals h

(
ψ1 |...| h

(
ψd−2 | h

(
ψd−1 | ZA

) )
...

)
(Proof that ZA belongs to the on-

chain Merkle Tree)

(d) NA equals h( σA | skZA ) (Proof NA is indeed the nullifier of ZA)

(e) ZB equals h( α | pkZB | σ ~AB ) (Proof that ZB contains the same asset as ZA)

11. Generate π := P ( pC , x, ω ); a proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.
Recall: pC – the proving key for C – will be stored on Alice’s computer.

The pair (π, x) is the zk-SNARK which attests to knowledge of private inputs ω without revealing
them.

12. Send (π, x) to the Shield contract for verification.

Using web3: nfTokenShield.transfer(proof, inputs, vkId)

Shield contract’s steps:

13. Verify the proof as correct: call a Verifier contract to verify the (proof, inputs) pair against the
verification key represented by vkId.

...

Figure 16a: Non-Fungible Transfer Algorithm
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Verifier contract’s steps:

14. Compute result = verify(proof, inputs, vkId).

I.e. Verify the (proof, inputs) pair against the verification key.

15. Return result∈{false, true} to the Shield contract.

Shield contract’s steps:

16. If result = false, revert.

17. Else:

(a) Check rootn+m−1 is in roots. (Revert if not).

(b) Check NA is not already in its list of ‘spent’ nullifiers. (Revert if not).

(c) Add ZB to the next empty leaf of the Merkle Tree.

(d) Recalculate the path to the root of the Merkle Tree from ZB for future users.

(e) Append the newly calculated root rootn+m to the ever-increasing array roots

(f) Similarly append the nullifier NA to the ever-increasing array N .

Alice’s steps:

18. Store relevant data in her local database, including the leafindex of ZB .

19. Send Bob important data privately via Whisper (using his public key pkWB ):

(a) The salt σ ~AB of ZB .

(b) The public key of Bob, pkZB , used by Alice in the preimage of ZB (for completeness, so Bob
can check the correctness of ZB himself).

(c) The tokenId α.

(d) ZB .

(e) The leafIndex of ZB within the on-chain Merkle Tree M (so Bob can locate it).

Bob’s steps:

20. Check the correctness of the information provided by Alice:

(a) Check ZB equals h( α | pkZB | σ ~AB )

(b) Check that ZB is stored at the leafIndex of M which Alice claimed.

21. Store relevant data in his local database, including whether or not his ‘correctness checks’ passed.

Figure 16b: Non-Fungible Transfer Algorithm

28



6.3.1 Details

We refer to the numbered steps of fig 16.

Step 1
This is handled at the time Bob creates an account through the UI.

Step 2
This is handled within the UI microservice (or within the api-gateway).

Step 3
This is handled within the api-gateway when a call is made by Alice to transfer to Bob.

Steps 4− 5
These steps are handled within nf-token-controller.js.

Steps 6− 7
These calls to the Shield contract are handled within nf-token-zkp.js.

It is important at this stage to note that there are an unknown number of other parties utilising the Shield contract.
Hence, the dynamic array of tokens Z might have grown since Alice appended her ZA as the nth leaf of M (during the
Mint explanation).
Suppose there have been m− 1 additional tokens added to M since Alice added ZA. That is,

Zn+m−1 = (Z0, Z1, ..., Zn−1, ZA, Zn+1, ..., Zn+m−1)

We denote the corresponding Merkle Tree which holds tokens Zn+m−1 by Mn+m−1. We denote its root by rootn+m−1;
an element of roots = (root0, root1, ..., rootn+m−1).

rootn+m−1 := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, ZA), h(Zn+1, ...)

))
, h
(
h
(
h(Zn+m−1, 0), 0

)
, 0
))

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, ZA), h(Zn+1, ...)

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, ZA), h(Zn+1, ...)

)
h(Zn−1, ZA)

Zn−1 ZA

h(Zn+1, ...)

Zn+1 ...

h
(
h
(
h(Zn+m−1, 0), 0

)
, 0
)

h
(
h(Zn+m−1, 0), 0

)
h(Zn+m−1, 0)

Zn+m−1 0

0

0 0

0

0

0 0

0

0 0

Alice retrieves the value of the current Merkle root, rootn+m−1, from the Shield contract.

Since Alice knows that ZA is at leaf-index n of Mn+m−1, Alice can also retrieve the path from the leaf Zn = ZA to
the root rootn+m−1. Path computations are done in zkp/src/compute-vectors.js.

We denote this path:

φZA
= [φd−1, φd−2, ..., φ1, φ0]

Note that φ0 = rootn+m−1.

Alice also retrieve’s the ‘sister-path’ of this path:

ψZA
= [ψd−1, ψd−2, ..., ψ1, ψ0]

where ψ0 = φ0 = rootn+m−1

For ease of reading, let’s focus only on the nodes of Mn+m−1 which Alice cares about for the purposes of transferring to
Bob:
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rootn+m−1 := φ0 = ψ0

φ1

ψ2

...

... ...

...

... ...

φ2

φ3

ψ4 ZA

ψ3

... ...

ψ1

...

...

... 0

0

0 0

0

0

0 0

0

0 0

Equipped with ψZA
, Alice can prove that she owns a token commitment at one of the leaves of Mn+m−1, without revealing

that it is ”Zn located at leaf-index n”.

Steps 8− 9
These steps are handled within nf-token-controller.js.

As a reminder, we let:

x = (NA, rootn+m−1, ZB) Public Inputs used to generate the Proof
ω = (α, ψZA

, skA, σA, pkB , σ ~AB) Private Inputs used to generate the Proof

Steps 10− 11
These steps are handled within a ZoKrates container.

Alice uses the Cnft−transfer (or C) – the set of constraints for a non-fungible transfer, located in zkp/code/gm17/nft-transfer

(see Trusted Setup). Cnft−transfer( ω, x ) returns a value of true if Alice provides a set of valid ‘satisfying’ arguments
(ω, x) to C.

Let’s elaborate on each of the checks and calculations constraining the inputs to C (we highlight public inputs in bold
below):

1. Calculate h(skA) =: pk′A.
Note that this newly calculated pk′A should equal pkA (Alice’s public key), but we don’t need to pass pkA as a
private input and explicitly check that pk′A = pkA; a check on the correctness of skA (and hence pk′A) is implicitly
achieved in the next two steps:

2. Calculate h(α | pk′A | σA) =: Z ′A.
Note again that this newly calculated Z ′A should equal ZA (Alice’s token commitment), but we don’t need to pass
ZA as a private input and explicitly check that Z ′A = ZA; a check on the correctness of ZA (and hence Z ′A) is
implicitly achieved in the next step:

3. Check inputs ψZA
= [ψd−1, ψd−2, ..., ψ1,ψ0 = rootn+m−1] and the newly calculated Z ′A satisfy:

h

(
ψ1 |...| h

(
ψd−2 | h

(
ψd−1 | Z ′A

) )
...

)
= rootn+m−1(=: ψ0)

Given the one-way nature of our hashing function h, the only feasible way we could have arrived at the correct value
of rootn+m−1 is if the sister-path ψZA

is correct, and if Z ′A is correct, which (working backwards) must mean that
skA is correct.

How does the circuit know the value of rootn+m−1 is correct? It doesn’t; but it is a ‘public input’, and we can
rely upon the Shield smart contract to check the correctness of all public inputs.

We’ve therefore shown in the steps so far, that:

– Alice is the owner of a token commitment (because she knows its secret key)

– Said token commitment is indeed a leaf of the on-chain Merkle Tree Mn+m−1.

Alice commits to spending her token ZA in the next step:

4. Check inputs σA, skA,NA satisfy: h(σA | skA) = NA

NA is referred to as a ‘nullifier’ because it is understood by all participants to be an indisputable commitment to
spend (‘nullify’) a token commitment. Remember that the token commitment being spent isn’t revealed; the earlier
steps have allowed Alice to demonstrate hidden knowledge of the secret key skA of a token commitment which does
indeed exist. By including skA in the nullifier’s preimage, Alice is binding herself as the executor of this transfer.
By including σA, Alice is specifying a serial number which is unique to the token ZA (thereby distinguishing this
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nullifier from those which would nullify any other token commitments she may own).

5. Check inputs α, pkB , σ ~AB ,ZB satisfy: h(α | pkB | σ ~AB) = ZB

This final step constrains the same asset α to be included in ZB as was included in ZA.
You might notice that the circuit doesn’t actually constrain Alice to use the correct values for Bob’s public key pkB ,
nor the serial number σ ~AB as inputs to the circuit. Alice is free to transfer ownership of the token commitment to
anyone.

Notice how each stage is linked to the last, and that at each of the ‘Check’ stages, private inputs are being reconciled
against at least one public input (highlighted in bold to help you notice). By structuring the circuit C in this way, we
are able to share only the public inputs with the Shield contract (along with a ‘proof’ πC,x,ω). We’ll see shortly that the
Shield contract checks the correctness of each of the public inputs against its current states.

If all of the above constraints are satisfied by the public and private inputs, ZoKrates will generate the proof πC,x,ω; a
proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.

Step 12
This transaction is handled within nf-token-zkp.js.

Having generated πC,x,ω, Alice then sends the following to the Shield contract from her anonymous Ethereum address
ΞA,1:

πC,x,ω

x = (NA, rootn+m−1, ZB)

Recall that everyone knows the checks and calculations which have been performed in the circuit Cnft−transfer, because
it is a public file in the Nightfall repository. Further, everyone knows the verification key vkC which uniquely represents
this circuit, because it has been publicly stored in the Verifier Registry contract. Therefore, when this anonymous caller
(Alice) shares the pair (x, πC,x,ω), and the ‘unique id’ of the relevant verification key vkC ; everyone will interpret this
information as the caller’s intention to transfer, and everyone will be convinced that the caller knows the secret key which
permits them to transfer ownership of a token commitment.

Steps 13− 15
The Verifier Registry contract already has stored within it the verification key vkC . It runs a verification function
V (vkC , πC,x,ω, x).

V : (vkC , πC,x,ω, x)→ {0, 1}

where:

V =

{
1, if πC,x,ω and x satisfy vkC

0, otherwise

Steps 16− 17
If the Verifier contract returns 1 (true) (verified) to the Shield contract, then the Shield contract will be satisfied that
Alice’s proof and public inputs represent her commitment to relinquish ownership of a token commitment, and to transfer
ownership of the underlying asset to someone via the newly proposed token commitment ZB . If the Verifier contract
returns 0, then the transaction will revert.

Let’s suppose Alice’s (x, πC,x,ω) pair is verified.

Following verification of the proof, the Shield contract will do the following:

1. Check rootn+m−1 is in roots.
(If not, the transfer will fail)

2. Check NA is not already in the list of nullifiers, which we denote N .
(If NA is already in N , the transfer will fail)

3. Append the commitment ZB to the ever-increasing array of tokens, Zn+m, so thatZn+m = (Z0, Z1, ...Zn−1, ZA, Zn+1, ...Zn+m−1, ZB)
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4. Recalculate a Merkle Root rootn+m of Mn+m

rootn+m := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, ZA), h(Zn+1, ...)

))
, h
(
h
(
h(Zn+m−1, ZB), 0

)
, 0
))

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, ZA), h(Zn+1, ...)

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, ZA), h(Zn+1, ...)

)
h(Zn−1, ZA)

Zn−1 ZA

h(Zn+1, ...)

Zn+1 ...

h
(
h
(
h(Zn+m−1, ZB), 0

)
, 0
)

h
(
h(Zn+m−1, ZB), 0

)
h(Zn+m−1, ZB)

Zn+m−1 ZB

0

0 0

0

0

0 0

0

0 0

Note that the Shield contract only needs to calculate the hashes on the path from ZB to the root.

5. Append rootn+m to the ever-increasing array roots

6. Similarly append the nullifier NA to the ever-increasing array N .

Steps 18− 19
The api-gateway routes the data resulting from a transfer to her local database.

Similarly, the api-gateway ensures any sensitive data (data which is private to Alice alone) is filtered before Alice sends
data to Bob.

Data which is crucial to Bob verifying his ownership of the new ZB is encrypted with Bob’s public whisper key pkWB and
broadcast to the Whisper network.

Steps 20− 21
Nightfall uses web3.shh to use Whisper. Bob’s logged-in application will listen for all Whisper messages, and will try to
decrypt all messages with his private whisper key skWB . If decryption is successful, the data will be stored in the relevant
database on Bob’s local machine.

nft-token-zkp.js includes functions to cross-reference the data Bob has received from Alice against the data stored in
the Shield contract.

Bob will store all important information in his private database.
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6.4 Burn

We continue with the notation and indices from the prior sections.

Suppose Bob is the owner of the token commitment ZB which represents the ERC-721 asset with tokenId α (as discussed
in the prior section). The asset α can continue to be transferred under zero-knowledge between parties within the Shield
contract indefinitely. Any third-party observers would not be able to infer ”who sent what to whom”.

Recall that whilst the ERC-721 token represented by α has a ‘private’ token commitment representation within the
Shield contract, the underlying ‘public’ ERC-721 token is owned by the Shield contract; effectively ‘locked up’ in escrow.

Suppose Bob (now the owner of α because he knows the secret key sk
Z,(n+m+1)
B,0 ) wishes to ‘release’ his public ERC-

721 token represented by α from escrow. Then he will need to effectively ‘reveal’ the contents of his token commitment
ZB in order to convince the Shield contract that he is indeed entitled to withdraw α from escrow. We call this act of
converting from a ‘private’ token commitment back to its ‘public’ counterpart a ‘burn’.

Note that by burning a token commitment, Bob is relvealing information which was previously private; namely, the
asset α. Bob could continue to use an anonymous Ethereum address when calling the ‘burn’ transaction, but analytics of
public ERC-721 transactions thereafter will likely eventually reveal that it was Bob who burned α. We’ll have Bob use
his public Ethereum address ‘burn’, for simplicity.

For Bob to burn ZB within the Shield contract, under zero knowledge, he follows the steps in fig 17:
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Non-fungible burn algorithm

Bob’s steps:

1. Compute NB := h( σ ~AB | sk
Z
B ), the nullifier of Bob’s commitment ZB .

2. Get ψZB
– the sister-path of ZB – from the Shield contract (see Details below).

3. Get the latest Merkle root from the Shield contract: rootn+m+k−1 (see Details below).

4. Set public inputs x = (α, NB , rootn+m+k−1)

5. Set private inputs ω = (ψZA
, skB , σ ~AB)

6. Select Cnft−burn( ω, x ) – the set of constraints which are satisfied if and only if:

(a) pkB equals h( skB ); (Proof of knowledge of the secret key to pkB) (see Details for why pkB
isn’t an input to C)

(b) ZB equals h( α | pkB | σ ~AB ) (Proof of the constituent values of ZB) (see Details for why ZB
isn’t an input to C)

(c) rootn+m+k−1 equals h

(
ψ1 |...| h

(
ψd−2 | h

(
ψd−1 | ZB

) )
...

)
(Proof that ZB belongs to the on-

chain Merkle Tree)

(d) NB equals h( σ ~AB | sk
Z
B ) (Proof NB is indeed the nullifier of ZB)

7. Generate π := P ( pC , x, ω ); a proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.
Recall: pC – the proving key for C – will be stored on Alice’s computer.

The pair (π, x) is the zk-SNARK which attests to knowledge of private inputs ω without revealing
them.

8. Send (π, x) to the Shield contract for verification.

Using web3: nfTokenShield.burn(payTo, proof, inputs, vkId)

where payTo is an Ethereum address, specified by Bob, into which he wishes for the ERC-721 token
with tokenId = α to be transferred.

Shield contract’s steps:

9. Verify the proof as correct: call a Verifier contract to verify the (proof, inputs) pair against the
verification key represented by vkId.

...

Figure 17a: Non-Fungible Burn Algorithm

34



Verifier contract’s steps:

10. Compute result = verify(proof, inputs, vkId).

I.e. Verify the (proof, inputs) pair against the verification key.

11. Return result∈{false, true} to the Shield contract.

Shield contract’s steps:

12. If result = false, revert.

13. Else:

(a) Check rootn+m+k−1 is in roots. (Revert if not).

(b) Check NB is not already in its list of ‘spent’ nullifiers. (Revert if not).

(c) Transfer the ERC-721 token with tokenId = α from the Shield contract (which has been
holding it in escrow) to Bob’s payTo Ethereum address.

(d) Append the nullifier NB to the ever-increasing array N .

Bob’s steps:

14. Check the ERC-721 contract to ensure he owns the token with tokenId = α.

15. Store any relevant data in his local database.

Figure 17b: Non-Fungible Burn Algorithm
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6.4.1 Details

We refer to the numbered steps of fig 17.

Step 1
This is handled within nf-token-controller.js.

Steps 2− 3
These calls to the Shield contract are handled within nf-token-zkp.js.

It is important at this stage to note that there are an unknown number of other parties utilising the Shield smart
contract. Hence, the dynamic array of tokens Z might have grown since Alice appended Bob’s ZB as the (n+m)th leaf
of M .
Suppose there have been k − 1 additional tokens added to Z since Alice added Bob’s ZB . That is,

Zn+m+k−1 = (Z0, Z1, ..., Zn−1, ZA, Zn+1, ..., Zn+m−1, ZB , Zn+m+1, ..., Zn+m+k−1)

We denote the corresponding Merkle Tree which holds tokens Zn+m+k−1 by Mn+m+k−1. We denote its root by
rootn+m+k−1; an element of roots.

rootn+m+k−1 := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, ZA), h(Zn+1, ...)

))
, h
(
h
(
h(Zn+m−1, ZB), h(Zn+m+1, ...)

)
, h
(
h(Zn+m+k−1, 0), 0

)))

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, ZA), h(Zn+1, ...)

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, ZA), h(Zn+1, ...)

)
h(Zn−1, ZA)

Zn−1 ZA

h(Zn+1, ...)

Zn+1 ...

h
(
h
(
h(Zn+m−1, ZB), h(Zn+m+1, ...)

)
, h
(
h(Zn+m+k−1, 0), 0

))
h
(
h(Zn+m−1, ZB), h(Zn+m+1, ...)

)
h(Zn+m−1, ZB)

Zn+m−1 ZB

h(Zn+m+1, ...)

Zn+m+1 ...

h
(
h(Zn+m+k−1, 0), 0

)
h(Zn+m+k−1, 0)

Zn+m+k−1 0

0

0 0

Bob retrieves the value of the current Merkle root, rootn+m+k−1, from the Shield contract.

Since Bob knows that ZB is at leaf-index n+m of Mn+m+k−1, Bob can also retrieve the path from the leaf Zn+m = ZB
to the root rootn+m+k−1. Path computations are done in zkp/src/compute-vectors.js.

We denote this path

φZB
= [φd−1, φd−2, ..., φ1, φ0]

Note that φ0 = rootn+m+k−1.

Bob also retrieve’s the ‘sister-path’ of this path:

ψZB
= [ψd−1, ψd−2, ..., ψ1, ψ0]

where ψ0 = φ0 = rootn+m+k−1.

For ease of reading, let’s focus only on the nodes of Mn+m+k−1 which Bob cares about for the purposes of burning
his token commitment ZB :

rootn+m+k−1 := φ0 = ψ0

ψ1

...

...

... ...

...

... ...

...

...

... ...

...

... ...

φ1

φ2

φ3

ψ4 ZB

ψ3

... ...

ψ2

...

... 0

0

0 0

Equipped with ψZB
, Bob can prove that he owns a token commitment at one of the leaves of Mn+m+k−1, without

revealing that it is ”Zn+m located at leaf-index n+m”.
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Steps 4− 5
These steps are handled within nf-token-controller.js.

As a reminder, we let:

x = (α, NB , rootn+m+k−1) Public Inputs used to generate the Proof
ω = (ψZB

, skB , σ ~AB) Private Inputs used to generate the Proof

Steps 6− 7
These steps are handled within a ZoKrates container.

Bob uses the Cnft−burn (or C) – the set of constraints for a non-fungible burn, located in zkp/code/gm17/nft-burn (see
Trusted Setup). Cnft−burn( ω, x ) returns a value of true if Bob provides a set of valid ‘satisfying’ arguments (ω, x) to
C.

Let’s elaborate on each of the checks and calculations constraining the inputs to C (we highlight public inputs in bold
below):

1. Calculate h(skB) =: pk′B .
Note that this newly calculated pk′B should equal pkB (Bob’s public key), but we don’t need to pass pkB as a
private input and explicitly check that pk′B = pkB ; a check on the correctness of skB (and hence pk′B) is implicitly
achieved in the next two steps:

2. Calculate h(α | pk′B | σ ~AB) =: Z ′B .
Note again that this newly calculated Z ′B should equal ZB (Bob’s token commitment), but we don’t need to pass
ZB as a private input and explicitly check that Z ′B = ZB ; a check on the correctness of ZB (and hence Z ′B) is
implicitly achieved in the next step:

3. Check inputs ψZB
= [ψd−1, ψd−2, ..., ψ1,ψ0 = rootn+m+k−1] and the newly calculated Z ′B satisfy:

h

(
ψ1 |...| h

(
ψd−2 | h

(
ψd−1 | Z ′B

) )
...

)
= rootn+m+k−1(=: ψ0)

Given the one-way nature of our hashing function h, the only feasible way we could have arrived at the correct
value of rootn+m+k−1 is if the sister-path ψZB

is correct, and if Z ′B is correct, which (working backwards) must
mean that skB is correct.

How does the circuit know the value of rootn+m+k−1 is correct? It doesn’t; but it is a ‘public input’, and we can
rely upon the Shield smart contract to check the correctness of all public inputs.

We’ve therefore shown in the steps so far, that:

– Bob is the owner of a token commitment (because he knows its secret key)

– Said token commitment is indeed a leaf of the on-chain Merkle Tree Mn+m+k−1.

– The token commitment does indeend represent the ERC-721 token with tokenId = α (remember that α is a
public input to a ‘burn’ zk-SNARK).

Bob commits to burning his token ZB in the next step:

4. Check inputs σ ~AB , skB ,NB satisfy: h(σ ~AB | skB) = NB

NB is referred to as a ‘nullifier’ because it is understood by all participants to be an indisputable commitment to
spend (‘nullify’) a token commitment. Remember that the token commitment being spent isn’t revealed; the earlier
steps have allowed Bob to demonstrate hidden knowledge of the secret key skB of a token commitment which does
indeed exist. By including skB in the nullifier’s preimage, Bob is binding himself as the executor of this ‘burn’.
By including σ ~AB , Bob is specifying a serial number which is unique to the token ZB (thereby distinguishing this
nullifier from those which would nullify any other token commitments he may own).

Notice how each stage is linked to the last, and that at each of the ‘Check’ stages, private inputs are being reconciled
against at least one public input (highlighted in bold to help you notice). By structuring the circuit C in this way, we
are able to share only the public inputs with the Shield contract (along with a ‘proof’ πC,x,ω). We’ll see shortly that the
Shield contract checks the correctness of each of the public inputs against its current states.

If all of the above constraints are satisfied by the public and private inputs, ZoKrates will generate the proof πC,x,ω; a
proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.
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Step 8
This transaction is handled within nf-token-zkp.js.

Having generated πC,x,ω, Bob then sends the following to the Shield contract from his Ethereum address EB :

EB πC,x,ω

x = (α,NB , rootn+m+k−1)

Recall that everyone knows the checks and calculations which have been performed in the circuit Cnft−burn, because it
is a public file in the Nightfall repository. Further, everyone knows the verification key vkC which uniquely represents
this circuit, because it has been publicly stored in the Verifier Registry contract. Therefore, when Bob shares the pair
(x, πC,x,ω), and the ‘unique id’ of the relevant verification key vkC ; everyone will interpret this information as the Bob’s
intention to burn; and everyone will be convinced that he knows the secret key which permits him to transfer ownership
of a token commitment; and everyone will be convinced that that token commitment represents the ERC-721 token with
tokenId = α.

Steps 9− 11
The Verifier Registry contract already has stored within it the verification key vkC . It runs a verification function
V (vkC , πC,x,ω, x).

V : (vkC , πC,x,ω, x)→ {0, 1}

where:

V =

{
1, if πC,x,ω and x satisfy vkC

0, otherwise

Steps 12− 13
If the Verifier contract returns 1 (true) (verified) to the Shield contract, then the Shield contract will be satisfied that Bob’s
proof and public inputs represent his commitment to burning a token commitment, and to withdrawing its underlying
ERC-721 token = α. If the Verifier contract returns 0, then the transaction will revert.

Let’s suppose Bob’s (x, πC,x,ω) pair is verified.

Following verification of the proof, the Shield contract will do the following:

1. Check rootn+m+k−1 is in roots.
(If not, the burn will fail)

2. Check NB is not already in the list of nullifiers, which we denote N .
(If NB is already in N , the burn will fail)

3. Transfer the ERC-721 token with tokenId = α from the Shield contract (i.e. from escrow) to Bob’s Ethereum
address.

4. Append the nullifier NB to the ever-increasing array N .

Steps 14− 15
Bob is now the owner of the public ERC-721 token. The Nightfall UI queries the linked ERC-721 contract for tokens
Bob owns. If Bob ever wished to convert this token back into a token commitment, he would need to do a non-fungible
‘mint’ (discussed earlier).
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7 ERC-20 (fungible) Tokens
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We recommend reading the ERC-721 (non-fungible) Tokens protocol first, because non-fungibility makes things simpler.

In this section we’ll give an overview of using Nightfall to privately transact fungible tokens (ft’s). We’ll cover three
key functions:

• Mint - create an initial ‘token commitment’; a private representation of a public ERC-20 token.

• Transfer - nullify the sender’s token commitment, and generate a new token commitment to represent ownership
by the recipient.

• Burn - nullify a token commitment, and receive the underlying public ERC-20 token.

7.1 Preliminaries
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7.1.1 Variables

Here we describe the variables used.

A,B participants Alice and Bob.

pkA the public key belonging to Alice.
skA the secret key belonging to Alice.

Note: there are several (secret key, public key) pairs in this protocol)

EA the Ethereum address of Alice.
ΞA,i an ‘anonymous’ Ethereum address belonging to Alice, where i ∈ N is an index, for

distinguishing between multiple anonymous addresses.

c, d, e, f ∈ R+|dp used to denote ERC-20 token values.
Note that in practice, the accuracy of these values is restricted by the number of decimal
places (dp) prescribed in the ERC-20 token contract.

σ a ‘salt’ used to provide uniqueness to commitment preimages.
σ ~AB stresses that a salt is being shared privately from Alice to Bob.

Z An ERC-20 commitment; a zero-knowledge commitment representing ownership of an
amount of ERC-20 tokens.

ZA Stresses that an ERC-20 commitment belongs to Alice.
Zc Stresses that an ERC-20 commitment represents a value of c (as denominated in the native

currency of the ERC-20 token).
Zl Stresses that an ERC-20 commitment is the lth leaf of a Merkle Tree (see below for M).

Note that the meaning of these (seemingly colliding or ambiguous) subscripts will be clear
from context.

N A nullifier for an ERC-20 commitment Z.
NA A nullifier for the ERC-20 commitment ZA
Nc A nullifier for the ERC-20 commitment Zc.

Note that the meaning of these (seemingly colliding or ambiguous) subscripts will be clear
from context.

M A binary Merkle Tree.
Ml A binary Merkle Tree with l non-zero leaves (where leaves are populated in order ‘from left

to right’).
rootl The root of Ml (‘M ’ is omitted because context will be clear).

φL [φL(d− 1), φL(d− 2), ..., φL(1), φL(0)] - The path from a leaf L to the root of a Merkle Tree
M , where φL(0) = root.

φ [φd−1, φd−2, ..., φ1, φ0] - Alternative notation for the path from a leaf, where the leaf L is
clear from the context. φ0 = root.

ψL [ψL(d−1), ψL(d−2), ..., ψL(1), ψL(0)] - The sister-path from a leaf L to the root of a Merkle
Tree M , where ψL(0) = φL(0) = root.

ψ [ψd−1, ψd−2, ..., ψ1, ψ0] - Alternative notation for the sister-path from a leaf, where the leaf
L is clear from the context. ψ0 = root.

x Public inputs to a zk-SNARK.
ω Private inputs to a zk-SNARK.
C An arithmetic circuit C : (ω, x)→ {0, 1}
pC A proving key for the circuit C.
vkC A verification key for the circuit C.
π(pC , x, ω) A proof for the circuit C, public inputs x, and private inputs ω
πC,x,ω An abbreviation of the above.
π An abbreviation of the above, when the context of the proof is clear.

h() A one-way hashing function. Nightfall currently uses sha256 hashing throughout.
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7.1.2 Key Management

There are several pairs of public and private keys to keep track of throughout these protocols. We provide a summary
here (for an actor Alice (A)):

Ownership of... Account symbol Private Key Public Key Notes

Ethereum address EA skEA pkEA Used for ‘mint’ and ‘burn’.

Anonymous Ethereum addresses ΞA,i skΞ
A,i pkΞ

A,i Used for ‘transfer’. i ∈ N.

Ethereum Whisper accounts WA,j skWA,j pkWA,j Used for private messaging. j ∈ N

ERC-20 commitment Zl Zl skZ,lA pkZ,lA Used to ‘mint’, ‘transfer’ and ‘burn’ Zl.

Hereafter, when we write skA and pkA we will be referring to skZ,lA and pkZ,lA respectively (where Zl is clear from context)
- unless otherwise stated.
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7.2 Mint

Suppose Alice wishes to be able to transfer ownership of an amount of ERC-20 tokens under zero-knowledge, so that the
following become private:

1. The value of ERC-20 tokens being transferred.

2. The identity of the sender of the tokens (‘Alice’).

3. The identity of the recipient of the tokens.

Figure 18: Privacy intentions: details we intend to keep private

In order to achieve this, Alice must first convert her ERC-20 tokens into a private ERC-20 commitment. We call this act
of conversion ‘minting’ an ERC-20 commitment.

In this section, we outline Nightfall’s protocol for minting an ERC-20 commitment, but first, an important privacy
warning:

PRIVACY WARNING

Privacy is NOT achieved during the minting stage!

Minting an ERC-20 commitment initially requires Alice to transfer a certain value of ERC-20 tokens to a
‘Shield’ contract (which thereafter holds this value in escrow). This transfer reveals the Ethereum address of
the sender (Alice) as well as the value. Therefore everyone will know the owner and the underlying value being
represented by the initial ERC-20 commitment which is created at this ‘minting’ stage.

Only during subsequent ‘transfers’ of the new ERC-20 commitment, will we achieve the privacy intentions
of fig. 18

Figure 19: Privacy warning: minting alone does not achieve privacy

Suppose Alice owns ERC-20 tokens of value c (denominated in the ERC-20 token’s currency). Suppose Alice wishes to
create a private token commitment, representating her ownership of value c.

For Alice to mint a token commitment Zc representing value c on the blockchain, under zero knowledge, she follows
the steps in fig 20. Note: We avoid using ZA (which was used to stress Alice’s ownership in the non-fungible section),
because Alice will own more than one token commitment when we explain ‘transfers’.
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Fungible mint algorithm

Alice’s steps:

1. Generate a random salt σc.

2. Compute Zc := h( c | pkZA | σc ), a token commitment which represents c.

3. Set public inputs x = ( c, Zc )

4. Set private inputs ω = ( pkZA, σc )

5. Select Cnft−mint( ω, x ) – the set of constraints which are satisfied if and only if:

(a) Zc equals h( c | pkZA | σc ) (Proof that the commitment Zc hides the correct value c)

6. Generate π := P ( pC , x, ω ); a proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.
Recall: pC – the proving key for C – will be stored on Alice’s computer.

The pair (π, x) is the zk-SNARK which attests to knowledge of private inputs ω without revealing
them.

7. Send (π, x) to the Shield contract for verification.

Using web3: fTokenShield.mint(proof, inputs, vkId)

Shield contract’s steps:

8. Verify the proof as correct: call a Verifier contract to verify the (proof, inputs) pair against the
verification key represented by vkId.

Verifier contract’s steps:

9. Compute result = verify(proof, inputs, vkId).

I.e. Verify the (proof, inputs) pair against the verification key.

10. Return result∈{false, true} to the Shield contract.

Shield contract’s steps:

11. If result = false, revert.

12. Else:

(a) Transfer a value of c, on behalf of Alice, to the Shield Contract. I.e. store c in escrow.

(b) Add Zc to the next empty leaf of the Merkle Tree.

(c) Recalculate the path to the root of the Merkle Tree from Zc for future users.

Alice’s steps:

13. Store relevant data in local database, including the leafindex of Zc.

Figure 20: Fungible Mint Algorithm
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7.2.1 Details

We refer to the numbered steps of fig 20.

Step 1
This is handled within the UI microservice (or within the api-gateway).

Steps 2− 4
These steps are handled within f-token-controller.js.

Steps 5− 6
These steps are handled within a ZoKrates container.

Step 7
This transaction is handled within f-token-zkp.js.

Steps 8− 10
The Verifier contract already has stored within it the object vkC (see Trusted Setup). It runs a verification function
V (vkC , π, x).

V : (vkC , πC,x,ω, x)→ {0, 1}

where:

V =

{
1, if πC,x,ω and x satisfy vkC

0, otherwise

Steps 11− 12
If the Verifier contract returns 1 (true) (verified) to the Shield contract, then the Shield contract will be satisfied with
Alice’s commitment, and will update its persistent states:

Suppose the Shield contract stores an ever-increasing array, Z, of all token commitments which have ever been submitted
by anyone.

Suppose, prior to Alice’s mint, there are n− 1 tokens in the tree:

Zn−1 = (Z0, Z1, ..., Zn−1)

The information held within Zn−1 may be represented by the root hash rootn−1 of a Merkle Tree Mn−1:

rootn−1 := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, 0), 0

))
, 0

)

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, 0), 0

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, 0), 0

)
h(Zn−1, 0)

Zn−1 0

0

0 0

0

0

0

0 0

0

0 0

0

0

0 0

0

0 0

Now that the Shield contract has been given verification that Alice’s commitment, Zc, does indeed hide the value c, the
Shield contract will do the following:

• Append the commitment Zc to the ever-increasing array of tokens, Zn−1, so that Zn = (Z0, Z1, ...Zn−1, Zc)
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• Recalculate a Merkle Root rootn of Mn:

rootn := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, Zc), 0

))
, 0

)

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, Zc), 0

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, Zc), 0

)
h(Zn−1, Zc)

Zn−1 Zc

0

0 0

0

0

0

0 0

0

0 0

0

0

0 0

0

0 0

• Append rootn to an ever-increasing array roots = (root0, root1, ..., rootn−1, rootn)

Step 13
Alice will store all important information in her private database.
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7.3 Transfer

We continue with the notation and indices from the ‘Mint’ section.

In the ‘Mint’ section, we saw how Alice can create an ‘ERC-20 commitment’ Zc within the Shield contract which:

• hides an underlying value c, denominated in the currency of a particular ERC-20 contract; and

• hides and binds Alice as the owner of Zc (and hence of value c) through an ownership keypair (skZA, pk
Z
A).

Recall our privacy intentions:
Alice wishes to be able to transfer ownership of an ERC-20 tokens under zero-knowledge, so that the following become
private:

1. All details of the value being transacted.

2. The identity of the sender of the value (‘Alice’).

3. The identity of the recipient of the value.

Figure 21: Privacy intentions: details we intend to keep private

Recall that minting a token commitment does not yet afford Alice any privacy (see the warning in fig 19). Only with
subsequent transfers will the whereabouts of value c and the amount Alice owns be hidden.

Suppose Alice wishes to transfer a value e to Bob under zero knowledge.

First, Alice must ensure she has ‘minted’ enough private token commitments which represent a value of at least e.
For convenience, suppose Alice has minted two private token commitments, representing ownership of values c and d,
where c+ d ≥ e. That is,

Zc := h( c | pkZA | σc )

Zd := h( d | pkZA | σd )

Let f be the balancing amount, so that c + d = e + f . In this example, we can think of f as Alice’s ‘change’ when she
pays Bob e.

Note that a fungible commitment transfer in Nightfall always requires two ‘input’ commitments and two ‘output’
commitments. There are several reasons for this:

• We’re using zk-SNARKs to attest to proof of a ‘transfer’ computation. Due to the way a computation (a set of
constraints) is abstracted into a (proving key, verification key) pair, the computations cannot be dynamically sized.
That is, the number of variables (public and private inputs) being passed into the computation must be of a fixed
size. Futher, only fixed-sized for-loops are possible within the computation.

Therefore, if we wanted to allow different permutations of ‘number of inputs’ and ‘number of outputs’, we would
need to perform a trusted setup for each permutation; store the verification key for each on-chain; and distribute
each proving key.

To avoid such complexity at this stage, we have chosen “two inputs, two outputs” for now.

• Having just one output would mean the sender would have to own a set of commitments which sum to exactly the
amount required by the recipient (no more, no less). This is impractical for most use cases.

• Having just one input increases the likelihood of an observer inferring information from analysis of transactions.

For Alice to transfer a value of e (and receive f as change) within the Shield contract, under zero knowledge, she
follows the steps in fig 22:
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Fungible transfer algorithm

Bob’s steps:

1. Before Alice can send him anything, Bob must register his public keys pkZB and pkWB against both
his public Ethereum address pkEB and his unique name ‘Bob’ within the PKD.

Alice’s steps:

2. Generate new random salts σe and σf .

3. Lookup Bob’s ‘zkp’ public key pkZB from the PKD.

4. Compute Ze := h( e | pkZB | σe ), a token commitment which represents value e, to be owned by
Bob.

5. Compute Zf := h( f | pkZA | σf ), a token commitment which represents value f , to be owned by
Alice (as change).

6. Compute Nc := h( σc | skZA ), the nullifier of Alice’s commitment Zc.

7. Compute Nd := h( σd | skZA ), the nullifier of Alice’s commitment Zd.

8. Get ψZc
– the sister-path of Zc – from the Shield contract (see Details below).

9. Get ψZd
– the sister-path of Zd – from the Shield contract.

10. Get the latest Merkle root from the Shield contract: rootn+m+k−1 (see Details below).

11. Set public inputs x = ( Nc, Nd, Ze, Zf , rootn+m+k−1)

12. Set private inputs ω = ( c, d, e, f, ψZc
, ψZd

, skA, σc, σd, pkB , σe, σf )

13. Select Cft−transfer( ω, x ) – the set of constraints which are satisfied if and only if:

(a) pkA equals h( skA ); (Proof of knowledge of the secret key to pkA) (see Details for why pkA
isn’t an input to C)

(b) Zc equals h( c | pkA | σc ) (Proof of the constituent values of Zc)

(c) Zd equals h( d | pkA | σd ) (Proof of the constituent values of Zc)

(See Details for why Zc and Zd aren’t inputs to C)

(d) rootn+m+k−1 equals h

(
ψZc

(1) |...| h
(
ψZc

(d− 2) | h
(
ψZc

(d− 1) | Zc
) )

...

)
(Proof that Zc

belongs to the on-chain Merkle Tree)

(e) rootn+m+k−1 equals h

(
ψZd

(1) |...| h
(
ψZd

(d− 2) | h
(
ψZd

(d− 1) | Zd
) )

...

)
(Proof that Zd

belongs to the on-chain Merkle Tree)

(f) Nc equals h( σc | skZA ) (Proof that Nc is indeed the nullifier of Zc)

(g) Nd equals h( σd | skZA ) (Proof that Nd is indeed the nullifier of Zd)

(h) Ze equals h( e | pkZB | σe ) (Proof that Ze hides value e)

(i) Zf equals h( f | pkZB | σe ) (Proof that Zf hides value f)

(j) c+ d equals e+ f .

(k) The two most significant bits of each of c, d, e, f are both zero. This prevents the output values
e and f from exceeding the maximum bit-lengths accepted by C (and hence prevents us from
creating two unspendable commitments).

14. Generate π := P ( pC , x, ω ); a proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.
Recall: pC – the proving key for C – will be stored on Alice’s computer.

The pair (π, x) is the zk-SNARK which attests to knowledge of private inputs ω without revealing
them.

15. Send (π, x) to the Shield contract for verification.

Using web3: nfTokenShield.transfer(proof, inputs, vkId)

...

Figure 22a: Fungible Transfer Algorithm
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Shield contract’s steps:

16. Verify the proof as correct: call a Verifier contract to verify the (proof, inputs) pair against the
verification key represented by vkId.

Verifier contract’s steps:

17. Compute result = verify(proof, inputs, vkId).

I.e. Verify the (proof, inputs) pair against the verification key.

18. Return result∈{false, true} to the Shield contract.

Shield contract’s steps:

19. If result = false, revert.

20. Else:

(a) Check rootn+m+k−1 is in roots. (Revert if not).

(b) Check Nc is not already in its list of ‘spent’ nullifiers. (Revert if not).

(c) Check Nd is not already in its list of ‘spent’ nullifiers. (Revert if not).

(d) Add Ze to the next empty leaf of the Merkle Tree.

(e) Recalculate the path to the root of the Merkle Tree from Ze for future users.

(f) Add Zf to the next empty leaf of the Merkle Tree.

(g) Recalculate the path to the root of the Merkle Tree from Zf for future users.

(h) Append the newly calculated root rootn+m+k to the ever-increasing array roots

(i) Similarly append the nullifiers Nc and Nd to the ever-increasing array N .

Alice’s steps:

21. Store relevant data in her local database, including the leaf-indices of Ze and Zf .

22. Send Bob important data privately via Whisper (using his public key pkWB ):

(a) The salt σe of Ze.

(b) The public key of Bob, pkZB , used by Alice in the preimage of Ze (for completeness, so Bob
can check the correctness of Ze himself).

(c) The value e.

(d) Ze.

(e) The leaf-index of Ze within the on-chain Merkle Tree M (so Bob can locate it).

Bob’s steps:

23. Check the correctness of the information provided by Alice:

(a) Check Ze equals h( e | pkZB | σe )

(b) Check that Ze is stored at the leafIndex of M which Alice claimed.

24. Store relevant data in his local database, including whether or not his ‘correctness checks’ passed.

Figure 22b: Fungible Transfer Algorithm
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7.3.1 Details

We refer to the numbered steps of fig 16.

Step 1
This is handled at the time Bob creates an account through the UI.

Step 2
This is handled within the UI microservice (or within the api-gateway).

Step 3
This is handled within the api-gateway when a call is made by Alice to transfer to Bob.

Steps 4− 7
These steps are handled within nf-token-controller.js.

Steps 8− 10
These calls to the Shield contract are handled within nf-token-zkp.js.

It is important at this stage to note that there are an unknown number of other parties utilising the Shield contract.
Hence, the dynamic array of tokens Z might have grown since Alice appended her Zc as the nth leaf of M (during the
Mint explanation).

Suppose Zc is located at the leaf-index n of the merkle tree M (and hence can also be denoted Zn) and Zd is located at
the leaf-index n+m of the merkle tree M .

Suppose there have been k − 1 additional tokens added to M since Alice added Zd. That is,

Zn+m+k−1 = (Z0, Z1, ..., Zn−1, Zc, ..., Zn+m−1, Zd, ..., Zn+m+k−1)

We denote the corresponding Merkle Tree which holds tokens Zn+m+k−1 by Mn+m+k−1. We denote its root by
rootn+m+k−1; an element of roots = (root0, root1, ..., rootn+m+k−1).

rootn+m+k−1 := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, Zc), h(..., Zn+m−1)

))
, h
(
h
(
h(Zd, ...), h(Zn+m+k−1, 0)

)
, 0
))

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, Zc), h(..., Zn+m−1)

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, Zc), h(..., Zn+m−1)

)
h(Zn−1, Zc)

Zn−1 Zc

h(..., Zn+m−1)

... Zn+m−1

h
(
h
(
h(Zd, ...), h(Zn+m+k−1, 0)

)
, 0
)

h
(
h(Zd, ...), h(Zn+m+k−1, 0)

)
h(Zd, ...)

Zd ...

h(Zn+m+k−1, 0)

Zn+m+k−1 0

0

0

0 0

0

0 0

Alice retrieves the value of the current Merkle root, rootn+m+k−1, from the Shield contract.

Since she knows the index of Zc is n within the leaves of Mn+m+k−1, Alice can also retrieve from Mn+m+k−1 the
nodes of the path from the leaf Zn to the root rootn+m+k−1. We denote this path:

φZc
= [φZc

(d− 1), φZc
(d− 2), ..., φZc

(1), φZc
(0)]

Note that φZc(0) = rootn+m+k−1.

Alice also retrieve’s the ‘sister-path’ of this path:

ψZc = [ψZc(d− 1), ψZc(d− 2), ..., ψZc(1), ψZc(0)]

where ψZc
(0) = φZc

(0) = rootn+m+k−1.

Similarly, Alice retrieves the path and sister-path φZd
and ψZd

.

49



For ease of reading, let’s focus only on the nodes of Mn+m−1 which Alice cares about for the purposes of transferring to
Bob:

rootn+m+k−1 := φZc(0) = ψZc(0) = φZd
(0) = ψZd

(0)

φZc(1) = ψZd
(1)

ψZc
(2)

...

... ...

...

... ...

φZc
(2)

φZc
(3)

ψZc(4) Zc

ψZc
(3)

... ...

φZd
(1) = ψZc

(1)

φZd
(2)

φZd
(3)

Zd ψZd
(4)

ψZd
(3)

... 0

ψZd
(2)

0

0 0

0

0 0

Equipped with ψZc
and ψZd

, Alice can prove knowledge of leaves Zc and Zd in Mn+m+k−1 without revealing Zc, Zd, nor
the paths φZc

, ψZc
, φZd

, ψZd
; all she needs to reveal is the root rootn+m+k−1 along with her proof.

Steps 11− 12
These steps are handled within f-token-controller.js.

As a reminder, we let:

x = (Nc, Nd, Ze, Zf , rootn+m+k−1) Public Inputs used to generate the Proof
ω = (c, d, e, f, ψZc

, ψZd
, skA, σc, σd, pkB , σe, σf ) Private Inputs used to generate the Proof

Steps 10− 11
These steps are handled within a ZoKrates container.

Alice uses the Cft−transfer (or C) – the set of constraints for a fungible transfer, located in zkp/code/gm17/ft-transfer

(see Trusted Setup). Cft−transfer( ω, x ) returns a value of true if Alice provides a set of valid ‘satisfying’ arguments
(ω, x) to C.

Let’s elaborate on each of the checks and calculations constraining the inputs to C (we highlight public inputs in bold
below):

1. Calculate h(skA) =: pk′A.
Note that this newly calculated pk′A should equal pkA (Alice’s public key), but we don’t need to pass pkA as a
private input and explicitly check that pk′A = pkA; a check on the correctness of skA (and hence pk′A) is implicitly
achieved in the next four steps:

2. Calculate h(c | pk′A | σc) =: Z ′c.

3. Calculate h(d | pk′A | σd) =: Z ′d.
Note again that these newly calculated Z ′c and Z ′d values should equal Zc and Zd respectively (Alice’s token
commitments). But we don’t need to pass Zc and Zd as private inputs and explicitly check that Z ′c = Zc and
Z ′d = Zd; a check on the correctness of Z ′c and Z ′d is implicitly achieved in the next step:

4. Check inputs ψZc
= [ψZc

(d − 1), ψZc
(d − 2), ..., ψZc

(1),ψZc(0) = rootn+m+k−1] and the newly calculated Z ′c
satisfy:

h

(
ψZc(1) |...| h

(
ψZc(d− 2) | h

(
ψZc(d− 1) | Z ′c

) )
...

)
= rootn+m+k−1(=: ψZc(0))

Given the one-way nature of our hashing function h, the only feasible way we could have arrived at the correct
value of rootn+m+k−1 is if the sister-path ψZc

is correct, and if Z ′c is correct, which (working backwards) must
mean that skA is correct.

5. Check inputs ψZd
= [ψZd

(d − 1), ψZd
(d − 2), ..., ψZd

(1),ψZd(0) = rootn+m+k−1] and the newly calculated Z ′d
satisfy:

h

(
ψZd

(1) |...| h
(
ψZd

(d− 2) | h
(
ψZd

(d− 1) | Z ′d
) )

...

)
= rootn+m+k−1(=: ψZd(0))

Given the one-way nature of our hashing function h, the only feasible way we could have arrived at the correct
value of rootn+m+k−1 is if the sister-path ψZd

is correct, and if Z ′d is correct, which (working backwards) must
mean that skA is correct.
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How does the circuit know the value of rootn+m+k−1 is correct? It doesn’t; but it is a ‘public input’, and we can
rely upon the Shield smart contract to check the correctness of all public inputs.

We’ve therefore shown in the steps so far, that:

– Alice is the owner of two token commitments (because she knows their secret key)

– Said token commitments are indeed leaves of the on-chain Merkle Tree Mn+m+k−1.

Alice commits to spending her tokens Zc and Zd in the next two steps:

6. Check inputs σc, skA,Nc satisfy: h(σc | skA) = Nc

Nc is referred to as a ‘nullifier’ because it is understood by all participants to be an indisputable commitment to
spend (‘nullify’) a token commitment. Remember that the token commitment being spent isn’t revealed; the earlier
steps have allowed Alice to demonstrate hidden knowledge of the secret key skA of a token commitment which does
indeed exist. By including skA in the nullifier’s preimage, Alice is binding herself as the executor of this transfer.
By including σc, Alice is specifying a serial number which is unique to the token Zc (thereby distinguishing this
nullifier from those which would nullify any other token commitments she may own).

7. Check inputs σd, skA,Nd satisfy: h(σd | skA) = Nd

8. Check inputs e, pkB , σe,Ze satisfy: h(e | pkB | σe) = ZB

This step constrains a value of e to be included in Ze.

9. Check inputs f, σf ,Zf and the calculated pk′A satisfy: h(f | pk′A | σf ) = Zf

This step constrains a value of f to be included in Zf . Note that the default constraints for a fungible transfer in
Nightfall force the second output token commitment to be returned to the sender as ‘change’, as we’re forcing pk′A
to be a constituent of Zf . It would be straightforward to make edits to allow this second token commitment to be
transferred to anyone.

10. Check that c+ d = e+ f . We must constrain that no value is created or lost.

11. Check that the most significant bit of each of c, d, e, f is zero. This prevents either (or both) of e and f from
exceeding the maximum bit-length of input values to C. If these bit-lengths were exceeded, then when if we were
to attempt to transfer Ze and Zf in future, they would be rejected by C.

Notice how each stage is linked to the last, and that at each of the ‘Check’ stages, private inputs are being reconciled
against at least one public input (highlighted in bold to help you notice). By structuring the circuit C in this way, we
are able to share only the public inputs with the Shield contract (along with a ‘proof’ πC,x,ω). We’ll see shortly that the
Shield contract checks the correctness of each of the public inputs against its current states.

If all of the above constraints are satisfied by the public and private inputs, ZoKrates will generate the proof πC,x,ω; a
proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.

Step 15
This transaction is handled within f-token-zkp.js.

Having generated πC,x,ω, Alice then sends the following to the Shield contract from her anonymous Ethereum address
ΞA,1:

πC,x,ω

x = ( Nc, Nd, Ze, Zf , rootn+m+k−1)

Recall that everyone knows the checks and calculations which have been performed in the circuit Cft−transfer, because
it is a public file in the Nightfall repository. Further, everyone knows the verification key vkC which uniquely represents
this circuit, because it has been publicly stored in the Verifier Registry contract. Therefore, when this anonymous caller
(Alice) shares the pair (x, πC,x,ω), and the ‘unique id’ of the relevant verification key vkC ; everyone will interpret this
information as the caller’s intention to transfer, and everyone will be convinced that the caller knows the secret key which
permits them to transfer ownership of a token commitment.
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Steps 16− 18
The Verifier Registry contract already has stored within it the verification key vkC . It runs a verification function
V (vkC , πC,x,ω, x).

V : (vkC , πC,x,ω, x)→ {0, 1}

where:

V =

{
1, if πC,x,ω and x satisfy vkC

0, otherwise

Steps 19− 20
If the Verifier contract returns 1 (true) (verified) to the Shield contract, then the Shield contract will be satisfied that
Alice’s proof and public inputs represent her commitment to relinquish ownership of two token commitments (which only
Alice knows to be Zc and Zd), and to transfer ownership of value to someone via the newly proposed token commitment
Ze (whilst receiving ‘change’ in the form of Zf ). If the Verifier contract returns 0, then the transaction will revert.

Let’s suppose Alice’s (x, πC,x,ω) pair is verified.

Following verification of the proof, the Shield contract will do the following:

1. Check rootn+m+k−1 is in roots.
(If not, the transfer will fail)

2. Check Nc is not already in the list of nullifiers, which we denote N .
(If Nc is already in N , the transfer will fail)

3. Check Nd is not already in the list of nullifiers, which we denote N .
(If Nd is already in N , the transfer will fail)

4. Append the commitment Ze to the ever-increasing array of tokens, Zn+m+k, so thatZn+m+k = (Z0, Z1, ...Zn−1, Zc, ..., Zd, ...Zn+m+k−1, Ze)

5. Recalculate a Merkle Root rootn+m+k of Mn+m+k

6. Append the commitment Zf to the ever-increasing array of tokens, Zn+m+k+1, so thatZn+m+k = (Z0, Z1, ...Zn−1, Zc, ..., Zd, ...Zn+m+k−1, Ze, Zf )

7. Recalculate a Merkle Root rootn+m+k+1 of Mn+m+k+1

Note: The ‘recalculation’ of the Merkle Root within the Shield contract only recalculates the hashes on the path from
the newly added leaf to the root. We do not recalculate the entire Merkle Tree as that would require exponentially
more computations. Hence, we need to perform this ‘recalculation’ each time a new commitment is added as a leaf.

rootn+m+k+1 := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, Zc), h(..., Zn+m−1)

))
, h

(
h
(
h(Zd, ...), h(Zn+m+k−1, Ze)

)
, h
(
h
(
Zf , 0

)
, 0
)))

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, Zc), h(..., Zn+m−1)

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, Zc), h(..., Zn+m−1)

)
h(Zn−1, Zc)

Zn−1 Zc

h(..., Zn+m−1)

... Zn+m−1

h

(
h
(
h(Zd, ...), h(Zn+m+k−1, Ze)

)
, h
(
h
(
Zf , 0

)
, 0
))

h
(
h(Zd, ...), h(Zn+m+k−1, Ze)

)
h(Zd, ...)

Zd ...

h(Zn+m+k−1, Ze)

Zn+m+k−1 Ze

h
(
h
(
Zf , 0

)
, 0
)

h
(
Zf , 0

)
Zf 0

0

0 0

8. Append rootn+m+k+1 to the ever-increasing array roots

9. Similarly append the nullifiers Nc and Nd to the ever-increasing array N .
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Steps 21− 22
Nightfall uses web3.shh to use Whisper. Bob’s logged-in application will listen for all Whisper messages, and will try to
decrypt all messages with his private whisper key skWB . If decryption is successful, the data will be stored in the relevant
database on Bob’s local machine.

ft-token-zkp.js includes functions to cross-reference the data Bob has received from Alice against the data stored
in the Shield contract.

Bob will store all important information in his private database.
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7.4 Burn

We continue with the notation and indices from the prior sections.

Suppose Bob is the owner of the token commitment Ze which represents a value of e (denominated in the currency
of a particular ERC-20 token).

Recall that whilst the token commitment Ze exists (read: “is spendable”) within the Shield contract, the Shield contract
holds an equivalent value of e ‘public’ ERC-20 tokens; effectively ‘locked up’ in escrow.

Suppose Bob (now the owner of Ze because he knows the secret key skB) wishes to ‘release’ a value of e ERC-20 tokens
from escrow. Then he will need to effectively ‘reveal’ the contents of his token commitment Ze in order to convince the
Shield contract that he is indeed entitled to withdraw e from escrow. We call this act of converting from a ‘private’ token
commitment back to its ‘public’ counterpart a ‘burn’.
Note that by burning a token commitment, Bob is relvealing information which was previously private; namely, the value
e. Bob could continue to use an anonymous Ethereum address when calling the ‘burn’ transaction, but analytics of public
ERC-20 transactions thereafer will likely eventually reveal that it was Bob who burned e. We’ll have Bob use his public
Ethereum address ‘burn’, for simplicity.

For Bob to burn Ze within the Shield contract, under zero knowledge, he follows the steps in fig 23:
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Fungible burn algorithm

Bob’s steps:

1. Compute Ne := h( σe | skZB ), the nullifier of Bob’s commitment Ze.

2. Get ψZe
– the sister-path of Ze – from the Shield contract (see Details below).

3. Get the latest Merkle root from the Shield contract: rootn+m+k+l (see Details below).

4. Set public inputs x = ( e, Ne, rootn+m+k+l)

5. Set private inputs ω = (ψZe
, skB , σe)

6. Select Cft−burn( ω, x ) – the set of constraints which are satisfied if and only if:

(a) pkB equals h( skB ); (Proof of knowledge of the secret key to pkB) (see Details for why pkB
isn’t an input to C)

(b) Ze equals h( e | pkB | σe ) (Proof of the constituent values of Zc) (See Details for why Ze isn’t
an input to C)

(c) rootn+m+k+l equals h

(
ψZe

(1) |...| h
(
ψZe

(d− 2) | h
(
ψZe

(d− 1) | Ze
) )

...

)
(Proof that Ze

belongs to the on-chain Merkle Tree)

(d) Ne equals h( σe | skZB ) (Proof that Ne is indeed the nullifier of Ze)

7. Generate π := P ( pC , x, ω ); a proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.
Recall: pC – the proving key for C – will be stored on Alice’s computer.

The pair (π, x) is the zk-SNARK which attests to knowledge of private inputs ω without revealing
them.

8. Send (π, x) to the Shield contract for verification.

Using web3: fTokenShield.burn(payTo, proof, inputs, vkId)

where payTo is an Ethereum address, specified by Bob, into which he wishes for e to be transferred
(denominated in the currency of the linked ERC-20 contract).

Shield contract’s steps:

9. Verify the proof as correct: call a Verifier contract to verify the (proof, inputs) pair against the
verification key represented by vkId.

...

Figure 23a: Fungible Burn Algorithm
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Verifier contract’s steps:

10. Compute result = verify(proof, inputs, vkId).

I.e. Verify the (proof, inputs) pair against the verification key.

11. Return result∈{false, true} to the Shield contract.

Shield contract’s steps:

12. If result = false, revert.

13. Else:

(a) Check rootn+m+k+l is in roots. (Revert if not).

(b) Check Ne is not already in its list of ‘spent’ nullifiers. (Revert if not).

(c) Transfer ERC-20 tokens of value e from the Shield contract (which has been holding the value
in escrow) to Bob’s payTo Ethereum address.

(d) Append the nullifier Ne to the ever-increasing array N .

Bob’s steps:

14. Check the ERC-20 contract to ensure his balance has increased by e.

15. Store any relevant data in his local database.

Figure 23b: Fungible Burn Algorithm
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7.4.1 Details

We refer to the numbered steps of fig 23.

Step 1
This is handled within f-token-controller.js.

Steps 2− 3
These calls to the Shield contract are handled within f-token-zkp.js.

It is important at this stage to note that there are an unknown number of other parties utilising the Shield smart
contract. Hence, the dynamic array of tokens Z might have grown since Alice appended Bob’s Ze and Alice’s Zf as
the (n+m)th and (n+m+1)th leaves of M . Suppose there have been l−1 additional tokens added to Z since then. That is,

Zn+m+k−1 = (Z0, Z1, ..., Zn−1, Zc, ..., Zn+m−1, Zd, ..., Zn+m+k−1, Ze, Zf , Zn+m+k+2, ...Zn+m+k+l)

We denote the corresponding Merkle Tree which holds tokensZn+m+k+l byMn+m+k+l. We denote its root by rootn+m+k+l;
an element of roots.

rootn+m+k+l := h

(
h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, Zc), h(..., Zn+m−1)

))
, h

(
h
(
h(Zd, ...), h(Zn+m+k−1, Ze)

)
, h
(
h
(
Zf , ...

)
, h(Zn+m+k+l, 0)

)))

h
(
h
(
h(Z0, Z1), ...

)
, h
(
h(Zn−1, Zc), h(..., Zn+m−1)

))
h
(
h(Z0, Z1), ...

)
h(Z0, Z1)

Z0 Z1

...

... ...

h
(
h(Zn−1, Zc), h(..., Zn+m−1)

)
h(Zn−1, Zc)

Zn−1 Zc

h(..., Zn+m−1)

... Zn+m−1

h

(
h
(
h(Zd, ...), h(Zn+m+k−1, Ze)

)
, h
(
h
(
Zf , ...

)
, h(Zn+m+k+l, 0)

))

h
(
h(Zd, ...), h(Zn+m+k−1, Ze)

)
h(Zd, ...)

Zd ...

h(Zn+m+k−1, Ze)

Zn+m+k−1 Ze

h
(
h
(
Zf , ...

)
, h(Zn+m+k+l, 0)

)
h
(
Zf , ...

)
Zf ...

h(Zn+m+k+l, 0)

Zn+m+k+l 0

Bob retrieves the value of the current Merkle root, rootn+m+k+l, from the Shield contract.

Since Bob knows that Ze is at leaf-index n+m+k of Mn+m+k+l, Bob can also retrieve the path from the leaf Zn+m+k = Ze
to the root rootn+m+k+l. Path computations are done in zkp/src/compute-vectors.js.

We denote this path

φZe
= [φd−1, φd−2, ..., φ1, φ0]

Note that φ0 = rootn+m+k+l.

Bob also retrieve’s the ‘sister-path’ of this path:

ψZe
= [ψd−1, ψd−2, ..., ψ1, ψ0]

where ψ0 = φ0 = rootn+m+k+l.

For ease of reading, let’s focus only on the nodes of Mn+m+k+1 which Bob cares about for the purposes of burning
his token commitment Ze:

rootn+m+k+l := φ0 = ψ0

ψ1

...

...

... ...

...

... ...

...

...

... ...

...

... ...

φ1

φ2

ψ3

... ...

φ3

ψ4 Ze

ψ2

...

... ...

...

... 0

Equipped with ψZe
, Bob can prove that he owns a token commitment at one of the leaves of Mn+m+k+l, without revealing

that it is ”Zn+m+k located at leaf-index n+m+ k”.
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Steps 4− 5
These steps are handled within f-token-controller.js.

As a reminder, we let:

x = (e, Ne, rootn+m+k+l) Public Inputs used to generate the Proof
ω = (ψZe , skB , σe) Private Inputs used to generate the Proof

Steps 6− 7
These steps are handled within a ZoKrates container.

Bob uses the Cft−burn (or C) – the set of constraints for a fungible burn, located in zkp/code/gm17/ft-burn (see
Trusted Setup). Cft−burn( ω, x ) returns a value of true if Bob provides a set of valid ‘satisfying’ arguments (ω, x) to C.

Let’s elaborate on each of the checks and calculations constraining the inputs to C (we highlight public inputs in bold
below):

1. Calculate h(skB) =: pk′B .
Note that this newly calculated pk′B should equal pkB (Bob’s public key), but we don’t need to pass pkB as a
private input and explicitly check that pk′B = pkB ; a check on the correctness of skB (and hence pk′B) is implicitly
achieved in the next two steps:

2. Calculate h(e | pk′B | σe) =: Z ′e.
Note again that this newly calculated Z ′e should equal Ze (Bob’s token commitment), but we don’t need to pass Ze
as a private input and explicitly check that Z ′e = Ze; a check on the correctness of Ze (and hence Z ′e) is implicitly
achieved in the next step:

3. Check inputs ψZe
= [ψd−1, ψd−2, ..., ψ1,ψ0 = rootn+m+k+l] and the newly calculated Z ′e satisfy:

h

(
ψ1 |...| h

(
ψd−2 | h

(
ψd−1 | Z ′B

) )
...

)
= rootn+m+k+l(=: ψ0)

Given the one-way nature of our hashing function h, the only feasible way we could have arrived at the correct
value of rootn+m+k+l is if the sister-path ψZe

is correct, and if Z ′e is correct, which (working backwards) must
mean that skB is correct.

How does the circuit know the value of rootn+m+k+l is correct? It doesn’t; but it is a ‘public input’, and we can
rely upon the Shield smart contract to check the correctness of all public inputs.

We’ve therefore shown in the steps so far, that:

– Bob is the owner of a token commitment (because he knows its secret key)

– Said token commitment is indeed a leaf of the on-chain Merkle Tree Mn+m+k+l.

– The token commitment does indeend represent a value of e ERC-20 tokens (remember that e is a public input
to a ‘burn’ zk-SNARK).

Bob commits to burning his token Ze in the next step:

4. Check inputs σe, skB ,Ne satisfy: h(σe | skB) = Ne

Ne is referred to as a ‘nullifier’ because it is understood by all participants to be an indisputable commitment to
spend (‘nullify’) a token commitment. Remember that the token commitment being spent isn’t revealed; the earlier
steps have allowed Bob to demonstrate hidden knowledge of the secret key skB of a token commitment which does
indeed exist. By including skB in the nullifier’s preimage, Bob is binding himself as the executor of this ‘burn’. By
including σe, Bob is specifying a serial number which is unique to the token Ze (thereby distinguishing this nullifier
from those which would nullify any other token commitments he may own).

Notice how each stage is linked to the last, and that at each of the ‘Check’ stages, private inputs are being reconciled
against at least one public input (highlighted in bold to help you notice). By structuring the circuit C in this way, we
are able to share only the public inputs with the Shield contract (along with a ‘proof’ πC,x,ω). We’ll see shortly that the
Shield contract checks the correctness of each of the public inputs against its current states.

If all of the above constraints are satisfied by the public and private inputs, ZoKrates will generate the proof πC,x,ω; a
proof of knowledge of satisfying arguments (ω, x) s.t. C(ω, x) = 1.

Step 8
This transaction is handled within f-token-zkp.js.
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Having generated πC,x,ω, Bob then sends the following to the Shield contract from his Ethereum address EB :

EB πC,x,ω

x = (e,Ne, rootn+m+k+l)

Recall that everyone knows the checks and calculations which have been performed in the circuit Cft−burn, because it
is a public file in the Nightfall repository. Further, everyone knows the verification key vkC which uniquely represents
this circuit, because it has been publicly stored in the Verifier Registry contract. Therefore, when Bob shares the pair
(x, πC,x,ω), and the ‘unique id’ of the relevant verification key vkC ; everyone will interpret this information as the Bob’s
intention to burn; and everyone will be convinced that he knows the secret key which permits him to transfer ownership
of a token commitment; and everyone will be convinced that that token commitment represents a value of e ERC-20
tokens.

Steps 9− 11
The Verifier Registry contract already has stored within it the verification key vkC . It runs a verification function
V (vkC , πC,x,ω, x).

V : (vkC , πC,x,ω, x)→ {0, 1}

where:

V =

{
1, if πC,x,ω and x satisfy vkC

0, otherwise

Steps 12− 13
If the Verifier contract returns 1 (true) (verified) to the Shield contract, then the Shield contract will be satisfied that Bob’s
proof and public inputs represent his commitment to burning a token commitment, and to withdrawing its underlying
ERC-721 token = α. If the Verifier contract returns 0, then the transaction will revert.

Let’s suppose Bob’s (x, πC,x,ω) pair is verified.

Following verification of the proof, the Shield contract will do the following:

1. Check rootn+m+k+l is in roots.
(If not, the burn will fail)

2. Check Ne is not already in the list of nullifiers, which we denote N .
(If Ne is already in N , the burn will fail)

3. Transfer a value of e ERC-20 tokens from the Shield contract (i.e. from escrow) to Bob’s Ethereum address.

4. Append the nullifier Ne to the ever-increasing array N .

Steps 14− 15
Bob is now the owner of e more ERC-20 tokens. The Nightfall UI queries the linked ERC-20 contract for tokens Bob
owns. If Bob ever wished to convert some or all of this value back into a token commitment, he would need to do a
fungible ‘mint’ (discussed earlier).
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