
Builders	Nights	Singapore	Keynote	-	Vitalik	Buterin
(0:04	-	23:10)

How	is	everybody	doing?	Come	on.	Very	cool,	very	cool.	So	exciting.

I	 think	 it's	 one	of	 the	most	packed	Builder	Nights	 that	we	ever	had	 in	Singapore.	And
yeah,	big	shout	out	to	you	guys	for	coming,	for	hearing,	and	it's	incredible	to	have	such
inspiration.	I	think	everybody,	until	now,	knows	Builder	Nights.

And	yeah,	 so	 just	a	quick	overview.	Builder	Nights	 is	all	 about	no	shilling.	We	want	 to
speak	about	technical,	narrative.

We	started	with	4.3.7.	We	went	to	different	kind	of	layer	2,	infrascaling,	and	we're	very
excited	 to	also	have	a	 lot	of	builders.	How	many	developers	do	we	have	 in	 the	 room?
Yeah?	Oh,	cool.	Nice,	nice,	nice,	nice,	nice.

Very	cool.	So	sounds	good.	Without	further	ado,	I	think	we	can	get	started.

Big	round	of	applause.	Thank	you	so	much,	Vitaliy,	for	coming	here	and	speaking	about
4.3.7.	And	yeah,	thank	you	so	much.	Always	this	light.

Sorry,	the	remote	is	too	centralized.	Come	on,	when's	the	transaction	confirming?	Should
we	be	fine?	Is	this	thing	like	running	on	chain	on	Bitcoin	Satoshi's	vision?	There	you	are.
Okay.

Okay.	So	great.	So	today	we're	talking	about	account	abstraction	and	ERC	4.3.7	and	ERC
7.7.0.2.	So	to	start	off,	right,	what	is	ERC	4.3.7?	So	ERC	4.3.7	is	this	culmination	of	a	ten-
year	journey	of	figuring	out	how	do	we	actually	make	account	abstraction	really	work	in
the	Ethereum	ecosystem	in	a	way	that	actually	satisfies	both	all	of	the	underlying	goals
as	 well	 as	 actually	 having	 the	 security	 and	 decentralization	 properties	 that	 we	 care
about.

So	actually	attempts	to	do	account	abstraction	in	Ethereum	started	all	the	way	back	in
2015.	So	even	when	Ethereum	launched,	actually,	for	a	while	there	was	a	plan	to	try	to
make	the	default	wallet	that	users	use	be	a	smart	contract	wallet.	And	this	was	a	serious
expectation	that	we	actually	had	for	some	amount	of	time	and	actually	this	was	also	the
reason	why	we	originally	did	not	make	logs	cover	ETH	transfers	between	EOAs	because
we	figured	that	people	would	quickly	switch	to	smart	contract	wallets	and	smart	contract
wallets	can	just	log	everything.

So	 at	 the	 beginning	 the	 first	 account	 abstraction	 EIP	was	 called	 EIP-86	 and	 then	 after
that	it	was	followed	up	by	EIP-208,	it	was	followed	up	by	many	more	things.	And	the	core
problem	that	it	was	trying	to	solve	is	basically	that	Ethereum	is	very	good	at	enabling	all
of	 this	general	purpose	computation	 for	 the	execution	part	of	a	 transaction.	So	 for	 the



part	of	a	transaction	that	actually	does	things	once	the	transaction	is	already	approved.

And	what	we	want	to	do	is	we	want	to	allow	the	validation	part	of	a	transaction	to	also
similarly	 try	 to	 be	 general	 purpose.	 The	 specific	motivating	 examples	 include,	 I	mean
one,	multi-sig	 wallets,	 right?	 So	 I've	 been	 talking	 like	 everywhere	 actually	 since	 2013
about	how	multi-sig	wallets	are	the	future	and	like	we	all	need	to	switch	to	them.	Then
two	is	a	quantum	upgrade	strategy.

Eventually	 quantum	 computers	 will	 come.	 According	 to	 Metaculous	 they'll	 come
sometime	 in	 the	 early	 to	 mid	 2030s.	 I've	 also	 talked	 to	 people	 who	 think	 that	 the
Metaculous	 estimate	 is	 crazy	 and	 I've	 also	 talked	 to	 other	 people	 who	 think	 that	 the
Metaculous	estimate	is	crazy.

The	 problem	 is	 that	 they	 think	 that	 it's	 crazy	 in	 opposite	 directions.	 So	 you	 know	we
need	to	be	prepared	for	quantum.	Quantum	computers	will	break	ECDSA	and	so	we	will
have	to	switch	to	some	other	mechanism.

Number	three	is	being	able	to	change	the	key	that's	securing	your	account,	right?	So	key
changes	are	a	regular	thing.	They're	a	basic	feature	of	any	kind	of	mainstream	computer
security.	So	like	PGP	keys	and	like	have	like	expiry	keys	in	general	have	expiry	dates	and
you're	supposed	to	like	rotate	them	out	and	switch	the	new	ones	because	there's	always
a	risk	that	over	time	a	key	gets	leaked.

Then	 key	 changes,	 so	 multi-sigs,	 also	 custom	 validation	 conditions.	 So	 things	 like	 if
you're	 sending	 a	 small	 amount	 of	 money	 require	 one	 key,	 if	 you're	 sending	 a	 larger
amount	of	money	require	like	four	out	of	seven.	So	this	is	how	the	Ethereum	foundation
wallet	works	for	example,	right?	So	a	whole	bunch	of	these	different	use	cases	that	try	to
implement	more	complicated	logic	on	the	validation	step.

So	ERC	or	EIP	86	and	208	started	doing	that	and	it	started	going	down	this	rabbit	hole
but	then	we	started	figuring	out	more	and	more	of	the	actual	security	issues,	right?	So
for	example,	one	of	the	problems	that	we	ended	up	finding	only	a	couple	years	in	that's
like	 a	 relatively	 subtle	 problem	 is	 this	 problem	 that	 what	 if	 you	 have	 a	 thousand
accounts	and	each	of	those	thousand	accounts	as	part	of	their	validation	they	call	 into
one	particular	contract	and	then	you	have	a	thousand	transactions	that	look	like	they're
valid	 but	 then	 someone	 sends	 one	 transaction	 that	 flips	 a	 bit	 in	 that	 in	 that	 shared
contract	from	one	to	zero	and	then	suddenly	all	thousand	of	those	contract	transactions
get	kicked	out	of	the	mempool.	This	is	a	pretty	bad	denial	of	service	vulnerability,	right?
And	 so	 this	 motivated	 the	 reasoning	 that	 hey,	 well	 we	 actually	 have	 to	 restrict	 the
storage	 slots	 that	 individual	 transactions	 can	 access	 during	 the	 validation	 phase	 and
then	we	discovered	a	couple	of	other	things	and	that's	where	eventually	EIP	2938	came
in	a	few	years	later.	Then	Ethereum	was	finally	entering	the	final	stretch	of	switching	to
proof-of-stake	and	the	entire	internet	was	basically	yelling	at	us	and	saying	Ethereum	is
bad	because	we	keep	promising	proof-of-stake	and	we	keep	never	delivering	and	so	we



felt	like	okay	you	know	we	have	to	like	actually	go	off	all	cylinders	and	like	actually	get
this	proof-of-stake	thing	out	there.

Of	course	as	soon	as	you	know	we	actually	got	close	the	narrative	immediately	flips	to
proof-of-stake	 being	 bad	 but	 you	 know	 that's	 fine	 that's	 how	 narratives	work.	 So	 now
Ethereum	is	proof-of-stake	and	you	know	it's	proven	to	be	robust	and	decentralized	for
over	two	years	and	that	number	will	keep	increasing.	Actually	yeah	wait	today	is	which
day?	It's	the	17th.

Okay	so	I	believe	like	two	days	ago	was	the	second	anniversary	of	the	merge.	So	happy
birthday	proof-of-stake.	So	 the	point	 is	 that	 like	we	were	busy	on	you	know	doing	 this
whole	 proof-of-stake	 thing	 which	 is	 very	 important	 so	 that	 Bitcoin	 maximalists	 would
laugh	at	us	less.

Well	actually	no	it's	important	it's	important	because	like	it's	good	for	a	Ethereum	to	stop
consuming	a	quarter	percent	of	the	world's	electricity	and	it's	good	for	the	chain	to	like
actually	have	economic	finality	and	be	more	secure	and	be	more	like	client	friendly	and
all	of	these	benefits	and	like	the	other	stuff	is	just	a	side	benefit	right.	So	the	point	is	that
we	 were	 busy	 right	 and	 so	 the	 change	 from	 an	 EIP	 to	 an	 ERC	 basically	 came	 about
because	we	figured	okay	how	do	we	actually	keep	moving	account	abstraction	forward?
Well	how	about	we	basically	give	the	task	to	a	part	of	 the	community	 that	 is	separate
from	the	core	developers	and	so	while	the	core	developers	are	focused	on	the	merge	we
can	 actually	 keep	 improving	 all	 of	 this	 account	 abstraction	 stuff	 in	 parallel,	 we	 can
launch	 it,	 we	 can	 iterate	 on	 it	 and	we	 can	 get	 it	 like	 really	 bootstrapped	much	more
quickly	in	that	way.	And	so	that	is	part	of	where	ERC	4.3.3.7	came	from.

The	 other	 part	 of	 where	 4.3.3.7	 came	 from	 is	 that	 at	 that	 time	 there's	 been	 this
community	of	people	that	were	interested	in	use	cases	like	letting	applications	sponsor
transaction	fees	for	their	users,	like	letting	people	pay	transaction	fees	in	stable	coins	or
in	whatever	asset	they	have	right.	So	if	you	imagine	you	know	you	are	some	merchant	in
Argentina	and	like	you	know	you	have	a	restaurant	and	then	someone	pays	you	23	Dai
for	a	meal	and	then	you	decide	that	like	you	want	to	buy	a	coffee	and	then	you	just	you
suddenly	need	to	spend	like	3.5	Dai	for	the	coffee	but	then	guess	what	you	don't	have
any	ETH	 in	your	wallet	 then	how	do	you	pay	right.	So	this	 is	 like	another	one	of	 those
things	that	somehow	got	into	the	label	of	being	account	abstraction	you	know	totally	not
my	fault	but	you	know	it's	in	there	fine.

And	so	there's	this	like	growing	range	of	use	cases	and	so	I	like	I'm	a	later	I'm	gonna	call
it	 the	 convenience	 side	 of	 account	 abstraction	 right.	 So	 4.3.3.7	 is	 like	 basically	 a
combination	of	turning	2.9.3.8	into	an	ERC	instead	of	an	EIP	so	something	that	works	as
a	higher	level	primitive	rather	than	being	a	directly	a	protocol	feature	and	features	like
paymasters	and	all	of	these	other	convenience	related	things	that	users	want.	So	this	is
the	history.



Now	what	are	the	goals	of	ERC	4.3.3.7	right.	So	one	is	allowing	users	to	specify	custom
validation	functions	so	I	talked	about	this	already.	Two	is	being	friendly	to	decentralized
mempools	and	not	suffering	from	DOS	attacks.

So	this	 is	 really	 the	thing	that	 is	hard	right.	 If	you're	willing	to	be	centralized	then	 like
actually	 you	 don't	 need	 any	 of	 this	 right.	 All	 you	 do	 is	 you	 just	 like	 have	 your	 smart
contract	wallet	and	then	you	just	like	send	zero	gas	transactions	and	then	you	give	it	off
to	 like	 a	 builder	 somewhere	 and	 then	 you	 know	 like	 if	 if	 the	 builder	 is	 worried	 about
being	DOSed	then	like	the	builder	can	like	KYC	you	with	a	phone	number	and	then	like
you	just	solve	the	problem	and	it's	fine	right.

Except	for	like	the	whole	reason	why	we're	doing	this	crypto	thing	in	the	first	place.	So	if
you	 actually	 want	 something	 that	 is	 open	 and	 decentralized	 it	 turns	 out	 that	 there's
actually	 a	 lot	 of	 pretty	 tough	 challenges.	 And	 then	 finally	 extensions	 to	 support
paymasters	and	also	extensions	to	support	signature	aggregation	which	is	another	one
of	those	topics	that	I	think	is	going	to	become	more	and	more	important	over	time.

Basically	 as	 more	 and	 more	 applications	 start	 involving	 snarks,	 snarks	 are	 crazy
expensive	or	on	layer	twos	if	you	want	to	use	BLS	signatures	to	save	data	then	like	it's	in
order	to	actually	get	the	data	savings	or	in	order	to	get	the	key	computation	verification
savings	in	the	snark	case	you	have	to	do	an	aggregation	step.	You	have	to	either	add	all
the	signatures	together	or	you	have	to	make	a	proof	of	 the	proofs	and	so	you	have	to
like	have	some	mechanism	for	representing	this	idea	that	like	end	users	come	in	with	n
signatures	or	n	proofs	and	then	you	make	like	one	proof	of	the	proofs	that	proves	that
those	n	objects	existing	but	without	actually	containing	them	and	so	you	save	on	either
data	or	computation	or	both.	So	supporting	all	of	this	stuff	at	the	same	time	is	the	goal	of
ERC	 4337	 right	 and	 especially	 the	 DOS	 resistance	 requirements	 are	 one	 of	 the	 key
reasons	why	ERC	4337	is	hard	right.

Basically	if	you	want	to	resist	DOS	attacks	you	need	to	resist	restrict	what	the	validation
phase	of	a	transaction	can	do	and	ERC	4337	is	the	result	of	a	decade	of	work	figuring	out
how	to	build	against	these	constraints	right.	So	there	have	been	many	many	instances	of
people	coming	 in	saying	oh	ERC	4337	is	over	complicated	 let	me	figure	out	something
much	much	simpler	in	a	hackathon	and	then	they	build	a	thing	and	then	they	realize	like
wait	 for	 this	 to	work	 like	you	basically	 just	 require	a	 centralized	 relayer	and	 then	 that
centralized	relayer	themselves	is	going	to	have	to	KYC	everyone	right.	So	like	these	are
actually	hard	problems	and	like	it	always	inevitably	ends	up	getting	into	the	point	where
4337	just	is	roughly	the	class	of	solutions	that	you	get.

So	 convenience	 versus	 security	 goals	 of	 account	 abstraction	 is	 something	 that	 I	 think
about	a	lot	as	like	a	key	categorization	right.	So	the	security	goals	of	account	abstraction
are	 the	 reasons	 that	 motivated	 me	 originally	 right.	 So	 multi-sig	 wallets,	 quantum
resistance,	social	recovery,	changing	keys,	especially	revoking	keys.



One	of	the	newer	things	is	wallets	being	secured	by	a	trusted	platform	module	so	I	have
pass	 keys	 and	 you	have	 a	 secp256r1	 is	 the	 algorithm	 that	 gets	 supported	by	 a	 lot	 of
these	and	EOAs	or	secp256k1	which	isn't.	So	security	goals	then	you	have	convenience
goals.	Convenience	goals	are	things	like	paying	gas	in	ERC	20s,	sponsored	transactions,
automation	so	 like	automatically	making	a	payment	every	month	and	then	there's	 like
interesting	things	that	are	in	the	middle	right.

So	for	example	this	idea	of	doing	multiple	operations	in	one	transaction.	This	is	actually
a	convenience	goal	and	a	security	goal.	The	reason	why	it's	a	convenience	goal	is	pretty
simple	right.

So	 who	 here	 has	 recently	 done	 a	 trade	 on	 just	 like	 any	 DEX?	 Okay	 cool	 people	 we
actually	use	DEXs	that's	good.	So	in	order	to	do	a	transaction	on	a	DEX	at	least	if	you're
doing	it	for	the	first	time	right	you	have	to	sign	two	transactions.	 It's	 like	step	one	you
approve	and	then	step	two	after	you've	approved	only	then	do	you	actually	get	to	send
the	transaction.

This	 is	 annoying.	 So	 this	 is	 the	 convenience	 part.	 If	 you	 could	 do	multiple	 operations
within	 one	 transaction	 you	 could	 just	 send	 one	 transaction	 and	 it's	 much	 more
convenient.

What's	the	security	part?	The	security	part	is	that	like	basically	this	ecosystem	has	come
up	 with	 an	 entire	 zoo	 of	 protocols	 that	 have	 basically	 said	 well	 this	 approval	 stuff	 is
annoying	and	so	let's	do	a	thing	where	you	just	like	do	a	single	approval	and	then	that
approval	 is	 just	 like	 an	 approval	 for	 infinite	 value	 and	 you	 try	 to	 approve	 as	much	 as
possible	 in	one	 transaction	so	 that	after	 that	you	don't	have	 to	 think	about	approvals.
The	problem	is	that	if	you	do	this	then	you're	trusting	an	ever-growing	amount	of	code
some	of	which	might	have	admin	keys	you	have	no	 idea	and	you're	trusting	that	code
with	the	ability	to	just	like	grab	an	unlimited	amount	of	money	from	your	wallet.	This	is
bad.

And	then	the	other	bad	thing	of	course	is	that	if	approving	is	like	a	thing	that	users	are
used	 to	 doing	 then	 what	 someone	 could	 do	 is	 like	 they	 could	 say	 hey	 you	 know	 I'm
gonna	do	one	of	those	things	where	I'm	going	to	give	you	free	airdrop	tokens	except	to
receive	those	tokens	I	need	to	verify	your	account	and	to	verify	your	accounts	you	have
to	click	approve	and	 then	you	click	approve	and	 then	you	 realise	 it	 just	grabs	all	your
ERC-20s.	So	doing	multiple	ops	in	one	transaction	can	prevent	a	lot	of	those	things	and
so	it's	also	a	security	feature.	But	anyway	so	what's	the	point	of	this	Venn	diagram?	Two
technologies	 that	people	 talk	about	as	 like	 sometimes	 I	 think	 talk	about	 incorrectly	as
being	like	substitutes	for	account	abstraction.

One	 is	multi-body	 computation	MPC	and	 the	other	 is	 you	 know	what	 used	 to	be	3734
now	it's	a	7702	and	I	think	like	this	like	I	think	it's	good	right	and	it's	important	but	it's
also	 important	 to	 understand	 why	 it's	 not	 full	 account	 abstraction	 right	 and	 basically



yeah	what	you	notice	is	that	MPC	by	itself	it's	I	mean	first	of	all	like	it	cannot	satisfy	any
of	these	convenience	goals	right	and	so	the	only	thing	that	it's	doing	is	it's	satisfying	the
security	 goals	 but	 then	 even	within	 the	 space	 of	 security	 goals	 it	 can't	 satisfy	 half	 of
them	right.	So	basically	because	like	an	MPC	wallet	it's	like	okay	fine	you're	MPCing	an
ECDSA	and	 that	 can	give	 you	multi-sig	 that	 can	give	 you	 social	 recovery	 that	will	 not
give	you	a	path	to	quantum	safety	that	will	not	give	you	a	key	revocation	that	will	not
you	give	you	TPM	compatibility.	Now	if	you	have	a	trusted	code	co-signer	it	can	give	you
granular	access	control	okay	so	that's	MPC	right	then	if	you	think	about	7702	it	actually
gives	you	all	of	the	convenience	features	but	it	still	doesn't	give	you	a	lot	of	the	security
features	right.

So	 it's	 important	 to	 remember	 like	 basically	 what	 some	 of	 these	 intermediate
technologies	can	do	but	also	what	 they	can't	do	and	 therefore	why	actually	getting	 to
the	finish	 line	of	 ideal	account	abstraction	 is	so	 important.	So	okay	I	mean	I've	 I	guess
I've	shit-talked	7702	for	two	minutes	but	you	know	I	yeah	you	know	I'm	a	co-author	and
so	you	know	7702	came	about	for	a	reason	right.	So	let's	talk	about	what	that	reason	is.

So	 what	 7702	 does	 is	 it	 gives	 existing	 EOAs	 the	 convenience	 features	 of	 account
abstraction	right.	So	basically	everything	in	this	the	right	side	of	the	Venn	diagram	7702
levels	up	EOAs	 to	 fit	 into	 that	 same	standard.	A	 key	goal	 of	 7702	 is	 to	allow	 the	EOA
ecosystem	and	 the	 smart	 contract	quality	ecosystem	 to	proceed	as	one	ecosystem	as
they	start	employing	all	of	these	convenience	features	right.

So	the	 intended	explicit	goal	 is	 that	when	for	example	Uniswap	upgrade	the	you	know
the	UI	upgrades	to	let	you	do	a	proven	trade	in	one	single	transaction	the	code	path	that
enables	 that	 is	 exactly	 the	 same	 code	 path	 if	 you're	 coming	 in	 with	 a	 safe	 versus	 if
you're	coming	 in	with	an	EOA	right.	Or	sponsored	transactions	same	thing	right	or	you
know	 like	 setting	 up	 some	 kind	 of	 social	 recovery	 ideally	 also	 the	 same	 thing.	 So
proceeding	as	one	ecosystem	right	and	ideally	yeah	you're	the	7702	wallet	code	can	just
be	smart	contract	wallet	code	right.

At	the	very	least	exactly	the	same	solidity	file.	So	if	we	do	that	then	we	basically	keep
these	 two	 ecosystems	 together	 and	 we	 level	 up	 the	 convenience	 side	 of	 the	 entire
ecosystem	 to	give	people	all	 these	 features	 that	we	need	and	 then	 in	parallel	we	can
keep	 improving	 the	 security	 features	we	 could	 keep	making	 the	 security	 side	 of	 4337
more	 and	more	 viable	more	 and	more	 secure	 cheaper	 and	 cheaper	 and	 then	 through
upgrading	or	through	conversion	like	we	merge	the	ecosystems	at	some	point	later.	So
this	basically	is	the	intended	roadmap.

So	what	 are	 the	 next	 steps	 right.	 So	 this	 is	 one	 of	 the	ways	 in	which	 I	 think	 about	 it
basically	yeah	if	you	think	about	the	two	axes	as	being	like	one	is	functionality	and	the
other	 is	efficiency	and	compatibility	with	you	know	existing	applications	 in	the	existing
ecosystem.	You	can	think	of	EOAs	as	being	in	one	corner	and	you	can	think	about	smart



contract	wallets	as	being	in	the	opposite	corner	right.

And	so	either	you	have	an	EOA	and	your	EOA	does	not	have	these	convenience	features
it	 does	 not	 have	 these	 security	 properties	 but	 on	 the	 other	 hand	 if	 you	 have	 a	 smart
contract	wallet	which	does	have	these	properties	then	your	smart	contract	wallet	like	it
has	a	whole	bunch	of	other	problems	right.	So	for	example	if	you	have	a	smart	contract
wallet	 you	 would	 also	 need	 to	 have	 an	 EOA	 that	 would	 that	 would	 do	 the	 paying
transaction	fees	and	you	would	be	incompatible	with	a	bunch	of	stuff	and	so	on	and	so
forth.	The	thing	that	7702	does	is	it	fulfills	this	short-term	EOAs	upgrades	bucket	right.

Basically	 yeah	 it	 moves	 EOAs	 up	 the	 functionality	 stack	 and	 then	 that	 gives	 you	 the
convenience	and	then	eventually	we	can	have	either	an	account	upgrade	mechanism	or
potentially	 we	 can	 convince	 users	 to	 just	 switch	 accounts	 entirely.	 This	 is	 a	 debate
whichever	one	happens	unfortunately	we	don't	have	to	resolve	it	tomorrow	then	we	can
actually	add	the	security	features	on	top	and	we	can	get	to	ideal	smart	contract	wallets
and	 then	 at	 the	 same	 time	 we	 can	 take	 account	 abstraction	 and	 then	 we	 can	 start
enshrining	 it	and	we	can	start	adding	 layer	one	protocol	 features	to	make	 it	more	and
more	 powerful	 and	 we	 can	 basically	 maneuver	 smart	 contract	 wallets	 into	 being	 the
exact	same	thing	as	upgraded	EOAs	and	then	eventually	the	only	thing	that	we	have	is
just	very	efficient	and	very	powerful	smart	contract	wallets.	So	this	is	the	long-term	goal
here	right.

So	next	steps	right.	So	EIP-7702	this	is	of	course	you	know	planned	for	Pectora	and	you
know	 it's	 going	 to	 be	 great	 and	 EOA	 users	 will	 start	 getting	 access	 to	 really	 nice
convenience	features.	I	mean	it	definitely	don't	expect	to	be	able	to	do	one	click	trades
on	 Uniswap	 at	 like	 fork	 time	 plus	 30	 minutes	 because	 I	 think	 this	 stuff	 needs	 to	 be
developed	securely	it	needs	to	be	deployed	with	care	and	you	know	all	of	those	things
but	these	kinds	of	functionalities	will	start	coming	online.

At	the	same	time	ongoing	work	on	refining	smart	contract	wallets	so	there's	this	entire
smart	contract	wallet	ecosystem	there's	a	lot	of	discussions	around	doing	modular	smart
contract	wallets,	what	pieces	can	we	standardize,	how	do	we	do	more	verification	of	all
the	different	pieces.	So	continued	improvements	on	that	whole	ecosystem	in	parallel	to
this	there's	this	whole	conversation	about	enshrining	 like	features	of	4337	 in	 layer	one
and	this	doesn't	have	to	mean	 like	 literally	 taking	all	of	4337	and	 just	 turning	 it	 into	a
layer	one	feature	right.	Actually	yeah	the	4337	team	so	you	know	people	some	people
from	4337	team	are	here.

Hi	Yoav,	say	hi	to	everyone.	So	we	you	know	we	yeah	so	you	know	we	always	already
like	 you	 know	 Yoav	 and	 the	 team	 have	 already	 yeah	 taken	 the	 original	 4337	 in	 like
turning	into	an	L1	feature	EIP	and	turn	it	into	a	collection	of	EIPs	that	like	put	in	specific
features	right	and	so	you	can	you	can	take	this	piece	by	piece	and	the	specific	value	that
you	 get	 by	 doing	 it	 piece	 by	 piece	 is	 basically	 like	 one	 is	 that	 there	 are	 certain



inefficiencies	 that	 are	 unavoidable	 when	 something	 is	 a	 smart	 contract	 right.	 So	 for
example	one	very	simple	one	is	like	what	if	you	have	a	bundle	like	you	have	to	load	the
code	you	have	to	load	a	bunch	of	storage	slots.

(23:10	-	28:34)

This	has	an	extra	fixed	cost	of	about	a	hundred	thousand	gas	and	this	is	an	expense	and
the	problem	 is	 that	 if	you	have	a	market	 that	has	a	high	 fixed	cost	and	 then	 like	 that
adds	a	market	 inefficiency	 right.	So	 that's	one	problem.	Another	problem	 is	 that	 there
has	been	a	 lot	of	discussion	around	 inclusion	 lists	and	around	 improving	the	Ethereum
network's	 transaction	 inclusion	 guarantees	 so	 that	 users	 can	 reliably	 see	 transactions
included	even	if	the	you	know	builders	become	super	centralized	and	the	builders	decide
that	they	want	to	screw	around	with	and	delay	certain	people	and	so	in	order	for	that	to
happen	what	we	want	 is	 not	 just	 EOA	based	 transactions	 but	 also	 account	 abstracted
user	operations	to	be	able	to	benefit	from	those	properties.

In	 order	 for	 that	 to	 happen	 because	 inclusion	 lists	 are	 a	 protocol	 level	 feature	 some
portion	 of	 ERC	 4337	 the	 concept	 of	 validation	 execution	 separation	 and	 the	 ability	 of
validation	to	be	something	that	is	a	smart	contract	code	needs	to	be	enshrined	in	some
form	right	and	so	this	is	also	a	bunch	of	work	that	needs	to	be	done	and	then	the	hope	is
that	over	the	next	few	years	we	can	get	to	the	point	where	the	parts	that	really	need	to
be	enshrined	get	enshrined	and	then	we	work	toward	some	kind	of	convergence	toward
an	end	state	for	this	ecosystem.	Making	dApps	more	smart	contract	wallet	friendly.	This
is	 super	 important	 for	 all	 the	 dApp	 builders	 out	 there	 right	 so	 there's	 a	 bunch	 of
assumptions	that	there	are	some	dApps	and	there	are	some	protocols	that	are	currently
used	that	will	stop	being	true	in	a	smart	contract	wallet	world.

So	one	simple	one	 is	 like	there's	some	of	 these	 like	permit	ERCs.	One	of	 the	problems
that	they	have	is	basically	that	they	make	the	assumption	that	if	you	have	a	public	key
that	 hashes	 to	 an	 address	 then	 that	 public	 key	 is	 authorized	 to	 control	 the	 address.
Pretty	simple	right?	In	an	EOA	world	this	is	guaranteed	to	be	true.

In	a	world	where	accounts	can	upgrade	this	is	not	guaranteed	to	be	true	and	so	you	have
to	do	things	in	a	way	that	assumes	that	any	wallet	can	become	a	smart	contract	wallet.
So	 this	 is	 one	 example.	 Another	 example	 is	 lots	 of	 dApps	 require	 off-chain	 signed
messages	 and	 off-chain	 signed	 messages	 there	 is	 an	 ERC	 for	 making	 them	 smart
contract	wallet	friendly	which	is	ERC	1271	and	then	on	top	of	that	there	is	another	ERC.

I	 forget	 the	number	 it's	 like	somewhere	 in	 the	high	six	 thousands	but	 the	point	of	 it	 is
basically	it	makes	it	extends	1271	to	cover	a	6492.	So	I	think	you	should	just	like	think	of
6492	 as	 being	 part	 of	 1271	 right?	 So	 if	 someone	 ever	 says	 1271	 just	 like	 assume	 it
includes	6492	right?	Which	basically	extends	it	to	cover	like	what	we	call	counterfactual
contracts.	Contracts	whose	code	has	not	yet	been	deployed	on	chain	right?	Which	 is	a
really	 important	use	case	right?	Because	like	your	account	receives	money	for	the	first



time	before	it	sends	a	transaction	for	the	first	time	right?	Because	you	need	to	already
have	money	to	send	a	transaction.

So	that's	like	dApps	need	to	support	that.	There's	also	like	certain	conceptual	changes.
So	 for	 example	 you	 can	 no	 longer	 assume	 that	 if	 you	 make	 a	 signature	 once	 that
signature	will	 stay	valid	 for	 the	 same	wallet	 forever	and	 like	 that's	 fundamental	 right?
Because	you	want	people	to	be	able	to	change	and	revoke	their	keys.

So	there's	a	bunch	of	these	changes.	Another	big	one	 is	 like	there	used	to	be	dApps.	 I
think	people	have	fortunately	already	stopped	doing	this.

That	assume	that	if	an	account	has	no	code	then	it's	an	EOA	and	so	it's	controlled	by	a
person	and	they	do	this	to	try	to	like	basically	prevent	smart	contracts	from	interacting
with	 their	 dApps	 and	 like	 they're	 trying	 to	 do	 like	 soulbound	 token	 type	 use	 cases	 or
royalties	 type	 use	 cases	 and	 things	 like	 that	 and	 that's	 something	 that	 unfortunately
you'll	probably	just	like	have	to	stop	doing	and	find	some	other	way	to	do	anyway.	So	all
important	next	steps.	Finally	a	whole	other	rabbit	hole	is	cross-layer	two	smart	contract
wallets	right?	So	one	of	the	things	I	talked	about	in	a	blog	post	last	year	is	this	idea	of
the	three	transitions.

Ethereum	ecosystem	needs	to	simultaneously	upgrade	in	three	directions.	One	of	them
is	 security	 and	 convenience	 through	 account	 abstraction.	 The	 second	 is	 scalability
through	 layer	 twos	 and	 the	 third	 is	 privacy	 through	 stealth	 addresses	 and	 various
cryptographic	protocols.

Now	 the	 challenge	 comes	when	 you	 have	 to	 do	multiple	 of	 these	 things	 at	 the	 same
time.	For	example	 if	you	have	an	EOA	that	EOA	 is	going	to	have	the	same	address	on
every	chain	that	has	any	version	of	the	EVM.	Actually	it	doesn't	even	need	to	have	the
EVM	right?	If	you	like	literally	just	take	Bitcoin	and	then	you	just	swap	out	SHA-256	and
RIPEM-D160	for	Ketchack	and	you	swap	out	the	address	format	then	like	you	would	be
able	 to	have	Ethereum	EOAs	on	Bitcoin	 right?	Now	 if	you	go	 to	smart	contract	wallets
then	like	suddenly	it	depends	you	might	end	up	depending	on	not	just	the	full	EVM	and
like	then	there's	like	a	difference	between	being	EVM	compatible	and	being	almost	EVM
compatible	and	so	there's	more	of	a	premium	on	like	actually	having	the	full	EVM.

(28:34	-	30:22)

Then	 you	have	 the	 fact	 that	 you	 have	 different	 EVM	versions	 and	 so	 if	 you	 know	you
have	some	EVMs	that	support	EOF	and	others	don't	then	that	creates	an	issue	and	then
finally	yeah	you	are	going	to	have	chains	where	you're	not	able	to	guarantee	having	the
same	address	on	every	chain	right?	And	this	is	like	one	of	the	motivations	of	the	whole
concept	of	chain-specific	addresses	right?	Basically	that	you	make	the	address	 like	the
human	 readable	 address	 include	 not	 just	 the	 20	 byte	 account	 ID	 but	 also	 include	 the
chain	 so	 L1	 or	 L2	 or	 whatever	 that	 that	 particular	 account	 is	 living	 on	 and	 then	 that



address	would	be	something	that	your	wallet	would	just	automatically	give	you	and	then
when	you	give	it	to	someone	that	then	they	would	already	know	like	this	is	the	network
this	 is	 the	 network	 that	 you're	 supposed	 to	 be	 sending	 them	 to	 and	 then	 if	 they're
they're	currently	on	Optimism	but	your	wallet	is	on	Arbitrum	then	they	would	know	the
wallet	would	know	to	do	a	cross	L2	transfer	instead	of	like	trying	to	transfer	on	Optimism
right?	And	so	the	whole	concept	of	like	accidentally	sending	someone	coins	on	Ethereum
when	they	should	have	sent	on	Polygon	will	just	stop	being	a	problem	right?	But	in	order
for	this	to	actually	happen	then	like	you	actually	need	chain-specific	addresses.	Another
big	issue	is	if	a	user	changes	their	keys	then	you	will	need	a	way	for	those	key	changes
to	propagate	across	 layer	twos	and	for	that	the	short-term	solution	 is	basically	making
key	 change	 messages	 that	 are	 replayable.	 The	 medium-term	 solution	 is	 a	 keystore
wallets	so	the	scroll	team	has	been	working	on	this	a	bunch	of	other	teams	have	been
working	 on	 this	 where	 the	 key	 information	 lives	 on	 layer	 one	 and	 then	 the	 long-term
solution	is	keystore	wallets	where	the	key	change	information	lives	on	layer	two.

(30:23	-	32:40)

So	 that's	 the	 kind	 of	 long-term	 roadmap	 there	 right?	 But	 the	 whole	 cross	 layer	 two
discussion	 is	 like	 one	 that's	 actually	 very	 tightly	 connected	 to	 the	 switch	 from	EOS	 to
smart	contract	wallets	and	then	actually	if	you	start	taking	privacy	into	account	then	you
start	 talking	 about	 stealth	 addresses	 and	 you	 start	 talking	 about	 how	 do	 we	 make
keystore	wallets	themselves	be	zk'd	and	there's	a	lot	of	really	interesting	stuff	there	and
so	like	that	ends	up	taking	things	even	further	right?	So	there's	still	quite	a	long	way	to
go	but	 I	 think	also	this	year	has	been	a	really	pivotal	year	for	this	whole	ecosystem	to
really	 become	much	more	mature	 right?	 So	we	 have	 EIP	 7702	 coming	 soon.	We	 also
have	zk	email	now	on	testnet	and	you	know	soon	will	become	available	in	wallets	so	like
I	know	I've	seen	like	sole	wallet	has	been	integrating	it.	I've	seen	I	believe	like	okx	has
been	 like	there's	been	a	bunch	of	wallets	starting	to	do	zk	email	and	 I	expect	 like	this
concept	of	zk	wrapping	institutional	guardians	like	this	also	will	be	one	of	the	big	unlocks
that	makes	the	whole	concept	of	multi-sig	and	social	recovery	like	actually	really	usable
for	 regular	 users	 right?	 So	 this	 year	 is	 a	 very	 good	 year	 for	 that	 and	 I	 think	 it's
particularly	powerful	because	it	creates	this	really	nice	spectrum	where	beginning	users
who	are	joining	for	the	first	time	and	users	who	are	like	very	cypherpunk	and	wants	to
hold	their	own	all	of	their	own	keys	and	users	that	wants	to	do	things	like	me	and	have
multi-sigs	and	like	do	social	recovery	with	various	other	individuals	like	can	all	be	part	of
the	same	ecosystem	and	can	all	use	the	same	dApps	and	all	use	the	same	wallets	right?
So	I	think	this	is	something	that's	really	starting	to	become	accessible	as	well	right?	So
really	trying	to	be	friendly	to	new	users	and	at	the	same	time	being	friendly	to	the	values
that	make	the	crypto	space	be	what	it	is	at	the	same	time	and	really	trying	to	do	a	good
job	of	that.

(32:41	-	50:19)



So	you	know	this	is	where	account	abstraction	is	this	year	but	still	a	long	way	to	go	and
best	of	 luck	to	all	of	us	building	to	make	that	happen.	So	I	think	I	think	we	have	like	a
couple	of	questions	so	let's	do	just	raise	your	hand	I	don't	know	yeah	let's	go	on	the	back
here.	Yeah	hi	Vitalik,	first	of	all	I	would	just	like	to	say	thanks	for	like	all	the	jobs	you've
created	everyone	in	Singapore	is	here	because	of	you.

My	question	 is	 instead	 of	 doing	 this	 on	 the	 base	 layer	 on	 L1	why	 can't	we	do	 this	 on
some	L2	and	kind	of	try	it	out	there	and	then	if	 it	all	works	out	then	come	to	L1?	It's	a
good	 question	 I	 mean	 I	 think	 my	 answer	 there	 is	 basically	 that	 like	 the	 Ethereum
ecosystem	 as	 a	 whole	 has	 some	 pretty	 powerful	 network	 effects	 right	 and	 like	 we've
seen	examples	of	people	trying	to	create	do	their	own	layer	two	and	do	their	and	make
wallets	that	target	specific	layer	twos	and	basically	say	you	know	we're	going	to	create
this	like	sub	ecosystem	and	it	just	it	feels	like	all	the	examples	of	that	that	I've	seen	just
end	up	failing	right	because	ultimately	like	people	don't	want	to	join	Ethereum	to	use	like
just	 your	 own	 two	 or	 three	 bespoke	 applications	 they	 want	 to	 use	 the	 entire	 set	 of
Ethereum	applications	and	so	for	that	reason	like	you	want	compatibility	across	a	broad
range	of	layer	twos.	I	mean	I	think	one	other	like	version	of	this	that	gets	brought	up	is
like	should	we	enshrine	4337	in	layer	twos	first	and	then	move	it	to	layer	one	later	and	I
think	 that's	 something	 that	 can	 happen	 right	 I	 mean	 there	 is	 a	 multiple	 growing	 L2
focused	 teams	 in	 the	 Ethereum	 foundation	 there's	 the	 roll	 call	 group	 there's	 a	 lot	 of
people	that	have	been	really	trying	to	like	do	this	movements	to	try	to	coordinate	layer	2
EVM	improvements	together	and	I	think	it's	good	to	like	it	 is	good	to	do	that	though	at
the	same	time	right	like	there's	still	a	lot	of	stuff	that	lives	on	layer	one	and	so	like	the
nice	thing	about	the	4337	approach	is	that	if	you	do	the	enshrines	thing	on	layer	two	but
then	you	also	just	have	an	ERC	on	layer	one	or	even	if	you	have	it	enshrined	on	like	five
L2s	but	 then	everywhere	else	you	have	an	ERC	version	 that's	 like	maybe	crappier	has
worse	censorship	resistance	it	costs	twice	as	much	but	at	least	you	can	use	it	like	that's
still	already	something	that's	much	better	right	so	I	think	like	there	there	is	a	lot	of	value
in	like	actually	bringing	over	the	existing	user	base	and	all	of	the	existing	network	effects
but	some	kind	of	like	staggered	deployment	is	something	that	where	there's	definitely	a
lot	of	value	in	it	as	well	in	one	other	arguments	that	I	used	to	be	strong	but	got	a	little	bit
weaker	recently	right	is	that	the	argument	used	to	be	that	like	oh	4337	is	expensive	so
let's	only	use	it	on	layer	2	where	on	layer	2	the	fees	are	trivial	right	and	what	we've	seen
happen	now	is	basically	yeah	like	layer	1	itself	has	gotten	much	cheaper	and	then	also
layer	 2s	 like	 the	 data	 has	 gotten	 cheaper	 right	 so	 like	 actually	 the	 data	 computation
balance	on	layer	2s	has	changed	somewhat	right	and	so	it	feels	like	it's	just	actually	fine
to	like	even	do	some	of	this	stuff	on	on	layer	1	more	and	then	you	know	hopefully	by	the
time	 layer	 1	 he	 like	 really	 heats	 up	 again	 I	 guess	 wise	 like	 we'll	 actually	 have	 some
enshrinements	and	all	this	stuff	will	be	cheaper	on	layer	1	as	well	hello	I'm	Sasha	I	work
for	1inch	and	my	question	related	to	swaps	because	we	are	here	for	the	representing	the
swaps	and	you	shared	the	user	experience	 for	 the	smart	wallets	and	there	was	a	 long
way	for	the	swap	there	was	a	p2p	DAXs	DAX	aggregators	then	DAX	aggregators	Uniswap



basically	released	their	standard	60	76	83	if	I	don't	remember	and	I	saw	your	comments
and	we've	just	released	another	vision	which	is	atomic	swaps	white	paper	and	I	just	want
to	see	like	and	now	I	saw	your	talks	and	I	really	I	hear	that	you	do	understand	correctly
that	 you	 think	 that	 chain	 abstraction	 and	 basically	 interoperability	 between	 chains
should	be	solved	not	through	the	um	any	standards	for	the	swaps	or	on	the	layer	on	the
layer	net	I	don't	know	aside	how	do	you	see	the	basically	the	swap	future	I	mean	okay	I
guess	uh	the	two	things	that	matter	 to	me	the	most	right	one	 is	uh	standardization	at
the	ux	layer	like	I	think	no	matter	what	we	need	to	have	the	property	that	you	can	take
an	address	that	address	contains	an	account	id	and	the	chain	and	you	can	put	that	into	a
two	field	and	then	you	can	click	send	and	if	it's	on	the	same	layer	one	and	layer	two	and
then	 it	 does	 like	 a	 regular	 send	 and	 if	 it's	 cross	 layer	 two	 the	 wallet	 figures	 out	 like
whatever	the	bat	whatever	is	the	best	uh	like	safe	cross	layer	swapping	method	that	you
that	it	can	that	that's	going	to	happen	quickly	right	so	that	so	that's	the	first	part	right	so
from	 a	 ux	 perspective	 making	 like	 within	 a	 chain	 and	 cross	 chain	 feel	 the	 same	 the
second	thing	that	I	personally	care	about	is	I	believe	that	at	the	very	least	there	needs	to
be	some	kind	of	like	fully	credibly	neutral	decentralized	like	you	know	like	no	governance
no	governance	token	a	kind	of	backstop	mechanism	so	that	like	we	it's	just	it's	just	this
thing	that	sits	there	and	always	provides	a	guarantee	that	there	is	at	 least	this	uh	one
way	to	do	a	trade	that	like	that	you're	all	that	any	wallet	will	always	be	able	to	do	and
that	it	will	be	able	to	do	like	even	uh	10	or	15	years	from	now	right	and	then	individual
wallets	can	uh	obviously	optimize	on	top	of	that	and	then	uh	 individual	 layer	twos	and
layer	two	ecosystems	can	optimize	on	top	of	that	and	and	you	can	uh	create	like	even	uh
individual	swapping	platforms	and	I	mean	they	like	to	me	yeah	so	the	one	one	benefit	of
your	 the	ERC	7683	approach	 in	particular	 right	 is	basically	 that	 it's	 like	extremely	 low
infrastructure	right	because	as	a	user	all	you	need	to	do	is	just	send	a	transaction	on	the
source	layer	two	right	you	don't	have	to	like	go	and	talk	to	any	IP	address	you	don't	need
any	off-chain	peer-to-peer	network	you	don't	need	like	anything	that	can	break	right	so
like	that	so	that's	why	like	I	see	7683	as	being	like	a	really	powerful	like	direction	to	go
like	especially	for	this	kind	of	backstop	I	mean	the	the	the	atomic	swap	approach	right	it
generally	does	involve	some	kind	of	off-chain	communication	right	and	uh	I	mean	I	think
if	 it's	more	efficient	 then	 like	 that's	 fine	 right	 I	 think	uh	 like	wallets	should	 integrate	 it
and	it's	all	its	job	to	try	to	give	like	the	best	experience	and	the	lowest	slippage	to	their
users	right	and	they	should	incorporate	that	right	so	like	that's	good	right	I	want	to	see	a
world	where	 users	 have	 I	mean	 like	 the	 lowest	 possible	 slippage	 I	 also	want	 to	 see	 a
world	where	you	know	like	if	some	totally	crazy	thing	happens	in	the	world	and	like	you
know	 like	 two-thirds	 of	 all	 the	 servers	 stop	 working	 and	 then	 another	 two-thirds	 stop
working	because	a	bunch	of	companies	shut	down	the	code	that	gets	written	10	years
should	 still	 be	 usable	 right	 so	 like	 I	 think	 our	 ecosystem	 should	 be	 satisfying	 both	 of
those	goals	at	the	same	time	yes	yeah	thank	you	for	all	your	hard	work	thanks	a	lot	for
your	presentation	 interesting	as	always	um	so	with	account	abstraction	you	would	get
um	addresses	that	are	specific	for	blockchain	would	that	be	negative	if	you	for	example
send	it	on	the	wrong	blockchain	to	that	address	sorry	the	the	addresses	that	are	specific



for	the	blockchain	yes	would	it	be	negative	for	you	would	it	be	negative	why	would	it	be
negative	 well	 if	 you	 have	 one	 address	 on	 ethereum	 but	 you	 send	 to	 that	 address	 on
arbitrum	by	mistake	right	sorry	so	when	I	mean	like	chain	specific	addresses	I	mean	the
idea	 that	 like	 the	address	so	 like	 the	 thing	 that	 right	now	 is	 like	0x	whatever	 like	 that
would	contain	both	the	account	id	which	is	what	it	is	now	and	it	would	also	contain	the
chain	right	so	from	a	ux	perspective	like	it	would	be	like	basically	physically	impossible
unless	you	like	start	intentionally	fiddling	with	digits	and	like	there's	even	ideas	to	make
the	chain	id	be	part	of	the	check	summing	mechanism	and	so	like	you	would	not	even	be
able	to	edit	it	manually	unless	you	go	into	python	or	whatever	um	and	and	so	like	from	a
user	experience	perspective	like	you	would	just	have	this	like	one	atomic	object	that	just
represents	the	idea	of	like	this	particular	account	on	this	particular	chain	right	and	so	the
whole	concept	of	like	sending	to	the	right	address	on	the	wrong	chain	is	not	something
that	would	 like	 even	be	possible	 anymore	oh	 let's	 do	a	 couple	 of	 questions	 there	one
there	 test	 test	 so	um	you	have	a	 slide	about	erc	7702	where	you	 it's	 it's	written	give
existing	ua	the	convenience	feature	of	account	abstraction	but	how	can	you	ensure	that
ua's	have	all	the	possible	feature	that	could	exist	because	abstraction	is	also	you	have
different	 type	 of	 smart	 wallets	 you	 know	 like	 safe	 have	 and	 you	 have	 and	 you	 have
probably	many	more	how	how	do	you	how	do	you	fix	how	do	you	solve	that	how	do	you
think	 about	 that	 yeah	 so	 7702	 was	 definitely	 meant	 to	 so	 it	 gives	 the	 convenience
features	right	because	what	7702	gives	you	is	it	basically	lets	you	have	something	that
is	a	smart	contract	wallet	from	the	perspective	of	like	an	execution	but	ultimately	it's	still
controlled	by	an	eoa	and	so	it	cannot	be	more	secure	than	an	eoa	but	aside	from	that	it
can	do	everything	 right	and	so	 for	 that	 reason	 right	7702	 is	 like	 it	 just	 is	by	definition
able	 to	 unlock	 whatever	 like	 convenience	 account	 abstraction	 features	 that	 you	 want
and	the	other	thing	that	it	could	give	you	right	is	it	could	give	you	like	a	wallet	that	has	a
second	 key	 right	 so	 like	 for	 example	 you	 could	 have	 an	 ecdsa	 key	 that's	 inside	 of	 a
hardware	wallet	and	then	at	the	same	time	you	can	like	authorize	a	second	key	but	then
you	 can	 give	 it	 a	 spending	 limit	 right	 so	 like	 you	 could	 do	 things	 like	 that	 but	 like
ultimately	the	security	is	upper	bounded	by	the	fact	that	there	is	still	one	single	key	that
controls	 the	 entire	 account	 and	 so	 like	 that	 just	 is	 the	 fundamental	 limitation	 of	 7702
right	7702	is	about	increasing	the	functionality	of	wallets	within	that	box	if	you	want	to
go	beyond	that	box	then	what	you	need	 is	you	need	to	either	switch	to	another	smart
contract	 wallet	 today	 or	 you	 need	 to	 like	 wait	 for	 potentially	 like	 if	 the	 community
decides	to	do	it	a	future	eip	that	would	allow	you	to	convert	an	eoa	or	a	7702	wallet	into
a	full	smart	contract	wallet	cool	i	just	want	to	mention	something	on	twitter	side	like	two
things	super	quickly	what	feature	are	important	to	you	that	make	a	wallet	perfect	that	i
remember	it	was	quite	viral	and	the	other	thing	is	that	you	public	mentioned	the	stage
one	 and	 i	 think	 like	 you	 want	 to	 expand	 on	 these	 two	 things	 because	 i	 think	 super
interesting	for	the	audience	here	sure	so	i	mean	features	that	make	a	wallet	 like	great
for	me	are	 i	mean	so	first	of	all	 right	 i	 think	 like	 i	wants	to	see	a	really	good	and	very
user-friendly	implementation	of	the	whole	multi-second	social	recovery	concept	and	you
know	the	concept	of	having	like	different	permissions	for	potentially	different	accounts	or



at	least	i	mean	like	different	classes	of	assets	or	applications	right	so	i	want	something
like	like	so	you	know	how	when	you	go	to	safe	and	you	can	set	up	a	new	wallet	one	thing
why	not	instead	of	just	letting	people	put	in	ethereum	addresses	also	let	people	put	in	an
email	address	 like	you	have	guardian	number	one	zero	x	one	 two	 three	 four	 five	blah
blah	guardian	number	two	can	be	like	sir	baba	lot.eth	guardian	number	three	can	be	like
you	 know	 like	 george	 at	 gmail.com	 and	 then	 under	 the	 hood	 it	 would	 automatically
generate	a	zk	email	address	that	 is	only	controllable	by	george	at	gmail.com	right	and
then	you	could	do	that	for	zk	email	you	could	do	that	for	a	non	adhar	you	could	do	that
for	 like	 zk-wrapped	 miner	 card	 like	 basically	 any	 of	 these	 zk-wrapper	 institutional
guardians	right	or	and	then	if	you	have	i	mean	like	let's	say	yeah	any	any	one	of	these
blockchain-based	 social	 media	 or	 messengers	 whether	 it's	 farcaster	 or	 status	 or
something	else	then	like	one	other	kind	of	like	even	like	further	goal	is	like	you	should	be
able	 to	 just	 like	 basically	 link	 your	 social	 to	 your	 wallet	 and	 it	 would	 automatically
suggest	a	set	of	guardians	to	you	based	on	who	your	frequent	contacts	are	based	on	you
know	like	who	actually	yeah	like	maybe	has	had	access	to	their	account	for	a	long	time
and	 who	 actually	 yeah	 like	 has	 a	 wallet	 that	 you	 can	 link	 to	 um	 so	 like	 the	 one
implementation	of	social	recovery	i	remember	seeing	in	the	wild	outside	of	crypto	right	is
wechat	like	in	wechat's	account	recovery	it	had	this	feature	where	basically	in	order	to
recover	 your	 account	 like	 you	 have	 to	 ask	 two	 of	 your	 contacts	 to	 send	 us	 you	 a
particular	 six	 digit	 code	 right	 and	 like	 the	 reason	why	 that	 account	 recovery	works	 is
because	like	you	don't	have	to	manually	choose	who	your	trusted	contacts	are	it's	 just
like	based	on	your	existing	contact	 list	 right	 so	a	 really	good	 implementation	of	 social
recovery	 that	 basically	 like	 guides	 the	 user	 toward	 what	 choices	 make	 sense	 for	 a
newbie	 what	 choices	 make	 sense	 for	 someone	 with	 like	 30	 million	 dollars	 and	 what
choices	make	sense	for	someone	who	is	you	know	like	very	paranoid	and	wants	to	trust
themselves	and	like	every	kind	of	points	in	between	right	so	that's	feature	number	one
uh	 feature	 number	 two	 is	 uh	 everything	 i've	 talked	 about	 like	 cross	 layer	 two	 a	 user
experience	cross	layer	two	compatibility	number	three	is	built	in	light	client	so	use	helios
to	actually	verify	 the	ethereum	layer	one	so	anytime	you	do	a	call	a	 transaction	 like	a
balance	get	even	a	transaction	simulation	you	you	ask	for	like	client	proofs	and	then	you
use	helios	and	like	you	actually	verify	them	and	you	do	that	for	layer	one	and	then	you
also	 do	 that	 exact	 same	 thing	 for	 any	 layer	 two	 that	 exposes	 how	 its	 like	 state	 root
mechanism	 works	 so	 that's	 number	 two	 number	 three	 deep	 integration	 of	 privacy
protocols	 so	 if	 you	 send	 if	 you	 create	 a	 new	 address	 and	 you	 move	 coins	 from	 one
address	to	another	address	the	default	way	to	do	that	move	should	be	through	a	privacy
protocol	if	you	have	a	wallet	and	within	that	wallet	you	have	five	different	addresses	the
wallet	 should	 treat	 that	 as	 being	 five	 different	 profiles	 that	 you	 are	 trying	 to	 keep
separate	from	each	other	this	is	not	perfect	but	i	think	less	information	is	always	better
than	maximum	information	right	you	want	to	try	to	like	uh	look	we	want	to	have	as	much
control	 and	 as	 much	 choice	 over	 the	 flow	 of	 information	 and	 which	 information	 gets
publicized	in	which	information	does	not	as	possible	right	so	that's	uh	so	that's	number
three	um	number	four	is	uh	i	mean	of	course	uh	all	of	the	like	protection	uh	protection



features	around	preventing	scams	around	preventing	like	detecting	thefts	detecting	bad
applications	 like	 that	 whole	 list	 of	 things	 and	 done	 in	 a	 way	 that's	maximally	 privacy
preserving	 um	 and	 then	 number	 five	 is	 uh	 i	 think	 this	 is	 another	 one	 of	 those	 things
that's	a	 little	bit	more	 far	out	 is	 instead	of	 like	 just	being	a	metamask	style	 thing	 that
assumes	daps	are	 in	a	browser	you	actually	 try	 to	 fix	 the	 security	prop	 flaws	 that	are
inherent	in	the	concept	of	daps	being	web	pages	itself	right	so	when	your	dap	is	a	web
page	you're	grabbing	the	dap	contents	from	a	server	you	have	no	 idea	whether	or	not
that	server	was	just	hacked	two	minutes	ago	and	the	entire	dap	replaced	with	one	that's
going	to	steal	all	your	money	right	so	what	we	need	at	the	very	least	is	uh	daps	need	to
have	code	uploaded	to	ipfs	and	you	should	your	what	your	browser	should	be	fetching	it
from	ipfs	directly	now	brave	does	this	but	like	the	implementation	is	crazy	slow	and	so
even	using	brave	i	end	up	using	dot	eth	dot	limo	so	you	want	an	implementation	that's
actually	fast	and	then	also	you	want	you	want	like	full	supply	chain	verification	right	so
you	want	something	where	if	you	have	some	way	of	knowing	let's	say	i'm	using	ave	then
like	you	should	be	able	to	say	okay	well	ave	is	ave	dot	eth	or	whatever	their	dot	eth	is
and	 then	 that	 dot	 eth	 should	 itself	 directly	 control	 the	 ipfs	 hash	 and	 so	 you	 would
actually	need	like	a	dao	to	approve	every	single	commit	to	the	uh	to	the	ui	right	so	you
actually	have	this	kind	of	chain	of	trust	and	then	if	the	ui	was	upload	was	changed	within
some	let's	say	24	hours	then	like	your	wallet	would	even	would	even	give	you	a	warning
of	that	so	i	basically	really	have	this	a	strong	end	to	end	chain	of	trust	for	dap	interfaces
and	 then	on	 top	of	 that	 like	actually	go	 in	and	 start	 thinking	about	 things	 like	oh	you
know	can	we	try	to	make	a	programming	language	to	try	to	make	dap	uis	automatically
yeah	you	know	like	more	guaranteed	to	like	actually	do	what	the	user	intends	to	do	then
we	can	think	about	privacy	protection	right	so	basically	attempting	to	access	an	outside
server	 should	 be	 viewed	 as	 a	 sensitive	 operation	 in	 just	 the	 same	 way	 as	 sending	 a
transaction	 should	 be	 viewed	 as	 sensitive	 operation	 right	 okay	 so	 yeah	 you	 know	 like
there's	basically	this	like	really	far	rabbit	hole	that	i	think	that	i	think	you	can	go	if	you
want	 to	create	an	 ideal	wallet	and	 i	would	 love	to	see	people	 like	you	know	 like	really
yeah	try	to	take	this	challenge	on	so	thank	you


