
You	Couldve	Invented	EigenLayer
(0:12	-	0:22)

Hi	everyone,	welcome	to	another	episode	of	the	Yboarding	session.	Today	we're	going	to
talk	about	you	could	have	invented	Agilear.	I'm	Kaido,	I'm	a	protocol	researcher	here	at
Agilear.

(0:22	-	0:27)

Joining	me	today	is	Jeff,	our	smart	contract	architect.	Great	to	have	you	here	Jeff.	Yeah,
pleased	to	be	here.

(0:27	-	0:35)

Awesome.	 Today	 we're	 going	 to	 talk	 about	 three,	 some...	 Kaido,	 I'm	 a	 protocol
researcher	here	at	Agilear.	Joining	me	today	is	Jeff,	our	smart	contract	architect.

(0:35	-	0:38)

Great	to	have	you	here	Jeff.	Yeah,	pleased	to	be	here.	Awesome.

(0:38	-	0:52)

Today	 we're	 going	 to	 talk	 about	 three	 subjects.	 First,	 we're	 going	 to	 describe	 why
Eigenlayer,	like	why	we	think	it	should	exist.	Then	from	that	why,	think	about	what	are
some	requirements	we	need	to	hit	to	build	it	out.

(0:53	-	1:03)

Lastly,	once	we	know	what	our	requirements	are,	let's	build	it	out.	Without	further	ado,
let's	jump	into	it.	Let's	start	with	the	why.

(1:04	-	1:26)

As	we	go	through	the	why,	we're	slowly	going	to	fill	in	the	requirements,	what	we	need
to	build	out	Eigenlayer,	what	to	solve	this	problem.	Let's	start	with	the	thing	that	we	all
understand	 very	 well,	 which	 is	 the	 current	 model,	 how	 people	 build	 decentralized
applications.	We	currently	build	decentralized	applications	this	way,	and	we're	going	to
have	a	very	ETH	focused	idea	here.

(1:27	-	1:42)

We	 build	 out	 decentralized	 applications	 on	 top	 of	 Ethereum.	 Ethereum	 provides	 the
underlying	security	for	all	these	applications.	These	dApps,	I	think,	are	very	well-known.

(1:42	-	2:11)



Just	to	give	out	some	examples,	it	could	be	a	DEX,	it	could	be	a	money	market,	it	could
be	a	yield	farm,	it	could	be	a	roll-up,	etc.	However,	there	are	some	limitations	on	what
kind	 of	 dApps	 you	 can	 build,	 and	 those	 are	 generally	 infrastructure-related	 projects.
When	an	infrastructure	project,	 for	example,	a	bridge	wants	to	build,	 it	cannot	tap	into
Ethereum	security.

(2:11	-	2:35)

It	 has	 to	 basically	 bootstrap	 its	 own	 security	 set	 to	 secure	 its	 decentralized	 service.
Normally,	this	kind	of	security	is	based	on	a	POS	system,	or	proof-of-stake	system.	And
these	proof-of-stake	systems,	people	use	this	because	the	other	alternatives	are	proof-
of-work	 and	 proof-of-authority,	 and	 proof-of-work	 is	 too	 energy	 intensive,	 proof-of-
authority	is	overly	centralized.

(2:36	-	3:04)

And	when	people	decide	to	go	on	proof-of-stake,	they	need	to	think	about,	okay,	what	is
the	stake,	right?	We	get	the	word	stake	in	 it,	and	people	generally,	once	again,	do	the
logical	next	step,	which	is	they	launch	a	native	token.	And	we	see	this	all	the	time	with
all	 layer	 ones,	 bridges,	 they're	 trying	 to	 secure	 different	 things	 with	 each	 other.
However,	we	realize	that	actually	the	stake	part	is	really,	really	difficult,	for	two	parts.

(3:04	-	3:21)

Stake	is	a	capital	problem,	meaning	you	want	people	to	contribute	capital.	So	you	want	a
market	 structure,	 right?	 And	 the	 infras	 are	 basically	 people	 who	 are	 building	 the
infrastructures.	 So	 there's	 a	 lack	 of	 platform	 for	 the	 stakers,	 or	 the	 people	 who	 can
provide	capital	to	find	the	people	who	are	building	the	infrastructure.

(3:22	-	4:04)

That's	the	first	thing	we	found,	which	is	we	want	a	platform	to	connect	stakers	and	infra
builders.	 That's	 the	 first	 thing	 we	 identified,	 right?	 They're	 builders,	 they're	 capital
providers,	 stakers,	 how	 do	 we	 connect	 the	 two?	 The	 other	 problem	 we	 realized,	 you
know,	 why	 is	 this	 really	 difficult	 to	 build	 is	 because	 native	 tokens	 in	 general	 are	 very
volatile.	Crypto	is	volatile	enough,	these	new	tokens	are	even	more	volatile.

(4:05	-	4:54)

The	other	thing	is	actually	very	hard	to	get	these	tokens,	right?	They're	not	listed	on	a	lot
of	 DEXs,	 they're	 not	 listed	 on	 a	 lot	 of	 centralized	 exchanges,	 so	 they	 have	 an	 access
problem.	So	the	second	problem	is,	do	you	have	to,	right?	This	stake,	does	it	have	to	be
from	this	native	token?	Can	it	be	from	other	tokens?	That	could	be	another	thing	we're
trying	to	solve	here,	right?	So	I	would	just	put	a	stake	with	other	tokens.	Yeah,	and	so	to
point	out	both	of	these	address	kind	of	aspects	of	the	same	issue,	which	is	if	you're	an



infrastructure	 developer,	 you	 don't	 necessarily	 know	 or	 even	 know	 how	 to	 or	 want	 to
bootstrap	your	own	kind	of	network	by	going	out	and	finding	all	of	these	stakers	yourself
and	convincing	them	to	use	your	own	tokens.

(4:54	-	5:18)

Yes,	and	you	don't	even	know	where	the	stakers	sort	of	are,	right?	You	have	to	sort	of	go
to	the	blind	world	and	maybe	you	only	can	find	a	subset	of	them.	If	there's	a	place	where
you	 can	 just	 tell	 everyone	 they're	 in	 the	 same	 spot,	 that	 would	 be	 the	 most
advantageous.	The	other	thing	 is,	you	also	have	to	convince	these	stakers	to	buy	your
volatile	token,	and	also	it's	hard	to	buy	and	sell,	hard	to	acquire,	to	buy	them	to	be	part
of	the	security	infrastructure.

(5:19	-	5:48)

There's	a	lot	of	bottlenecks	here.	And	the	last	thing	is,	for	these	stakers,	when	they	buy
your	token,	they're	incurring	an	opportunity	cost	of,	when	they	stake	into	your	system,
they're	incurring	an	opportunity	cost	if	they	just	bought	ETH	and	staked	ETH.	So	this	is
basically,	how	do	we	compete	with	the	native	yield	ETH	gives	you?	Yeah,	so	if	they	were
staking	with	ETH	instead	of	your	token,	they'd	be	getting	the	ETH	staking	rewards.

(5:48	-	6:02)

Which	is	like	4%.	Yes,	and	in	all	likelihood,	your	native	token	might	be	more	volatile.	So
you're	taking	risk	on	both	the	price	and	the	yield.

(6:02	-	6:19)

Yes.	And	if	you	want	to	compete,	you	need	to	convince	them	that	your	yield	is	good	and
your	 token	 is	 stable	 or	 looking	 good.	 Exactly,	 which	 is	 the	 yield	 is	 good	 part,	 which
makes	a	lot	of	the	Cosmos	and	that's	the	most	prominent	POS	chains.

(6:19	-	6:53)

A	 lot	 of	 them	 are	 around	 10,	 20,	 even	 30%	 emission	 rewards	 because	 they	 want	 to
compete	with	that	native	yield	ETH	is	giving.	So	I'm	going	to	just	rephrase	it	into	lower
opportunity	 cost.	 And	 the	 last	 thing	 is	 many	 times	 as	 we	 become	 more	 modular	 and
become	more	complex	in	our	designs	of	this	blockchain	system,	a	lot	of	dApps	are	going
to	rely	on	different	infrastructures.

(6:53	-	7:18)

And	the	easiest	example,	we	can	think	of	a	dApp	that's	a	DEX	that	can	do	cross-chain
swaps,	 right?	 The	 infrastructure	 here	 would	 be	 a	 bridge	 provider.	 And	 because	 your
dApp's	now	being	secured	by	two	things,	to	attack	your	system,	I	do	not	need	to	attack
Ethereum,	 I	 just	 need	 to	 attack	 the	 part	 that	 has	 the	 lowest	 security,	 which	 is



infrastructure.	And	you	have	a	fragmentation	security	problem.

(7:18	-	7:37)

To	 attack	 your	 system,	 I	 just	 need	 to	 find	 the	 weakest	 link	 and	 that	 becomes	 really,
really	 problematic.	 So	 it	 would	 be	 better	 if	 we	 can	 pool	 security	 or	 in	 some	 way	 to
bootstrap	the	security	of	the	infrastructure	from	this	huge	ETH	set	so	the	lower	bound	of
attack	is	going	to	be	a	lot	higher.	Strengthen	your	weakest	link.

(7:37	-	7:54)

Yes.	 So	 let's	 say,	 how	do	we	do	 it?	We're	going	 to	 introduce	 the	 concept	 of	 restaking
here.	 Basically,	 you're	 securing	 both	 at	 the	 same	 time	 with	 the	 same	 stake	 to	 pool
security	instead	of	fragmenting	them.

(7:57	-	8:13)

All	 right.	 And	 now	 we	 cover,	 we	 basically	 speed	 run	 through	 the	 intro	 section	 of	 the
article.	In	the	actual	article,	we	go	much	more	in	depth	about	why	these	are	the	actual
problems	and	why	these	requirements	are	set	this	way.

(8:13	-	8:32)

But	now	we	have	all	these	requirements	here,	we're	going	to	go	jump	into	the	building
section,	 right?	 That's,	 I	 think,	 the	 meat	 of	 this	 whiteboarding	 session.	 We're	 going	 to
think	about,	okay,	on	a	smart	contract	level,	how	do	we	actually	achieve	each	of	these
goals	we	set?	Okay.	Conceptually,	we	realize	what	this	platform	is.

(8:32	-	8:52)

How	do	we	implement	it	on	Ethereum?	Okay.	So	let's	do	a	really	simple	sketch	to	start
out	with.	So	we've	got	our	staker	and	we're	going	to	have	some	kind	of	a	smart	contract
pool	where	stakers	can	put	their	tokens	in.

(8:53	-	9:17)

So	stakers	need	to	be	able	to	deposit.	They	also	need	to	be	able	to	get	their	tokens	back
so	they	have	to	be	able	to	withdraw.	And	then	the	last	piece	of	this	conceptually	is	that
there	needs	to	be	some	way	to	slash	these,	the	staker	kind	of	misbehaves	in	some	way
that	the	developer	has	grabbed.

(9:17	-	9:32)

I	 see.	So	 in,	 just	going	back	here,	 that	means	each	 individual	 infrastructure	developer
would	just	write	a	contract	and	whatever	they	want	the	stakers	to	commit	to,	they	would
just	encode	that	into	the	slashing	contract.	Yes.



(9:32	-	9:36)

The	EFX,	the	UR	slash.	Exactly.	Okay,	perfect.

(9:36	-	9:49)

And	 so	 now	 we	 actually	 implemented	 the	 first	 one.	 What	 about,	 how	 do	 we	 do	 the
second	one?	Staking	with	other	tokens?	Yeah,	staking	with	other	tokens.	Well,	this	token
pool	could	be	any	token.

(9:49	-	10:02)

Yes.	Because	we're	on	Ethereum,	there's	like	a	million	different	tokens.	Yeah,	so	actually
we,	 because	 on	 Ethereum,	 we	 can	 actually	 solve	 this	 problem,	 right?	 If	 you're	 the
infrastructure	developer,	you	can	just	say,	hey,	we're	going	to	take	USDC.

(10:02	-	10:10)

Hey,	 we're	 going	 to	 take	 X	 token.	 We're	 going	 to	 take	 Y	 token.	 It's	 entirely
permissionless	for	people	to	use	any	kind	of	tokens	because	you're	living	on	Ethereum.

(10:11	-	10:31)

Okay,	 next	 one.	 How	 do	 we	 lower	 the	 opportunity	 cost	 for	 stakers,	 especially	 the
company	with	the	native	yield?	So	luckily,	there's	already	a	bunch	of	existing	tokens	that
essentially	 encapsulate	 Ethereum's	 native	 yield.	 So	 these	 are	 liquid	 staking	 tokens,	 or
LSTs.

(10:32	-	10:44)

So	we	could	just	pick	an	LST	as	the	token	that	goes	into	the	pool.	And	then	these	stakers
can	continue	to	get	Ethereum's	kind	of	native	yield	while	being	in	it.	Wow.

(10:44	-	11:18)

What	if	I	don't	hold	a	liquid	staking	token?	I'm	actually	an	ETH	staker	myself.	How	would
I,	can	 I	still	be	part	of	 this?	Yeah,	so	 in	 that	case,	we	could	build	a	system	that	allows
people	 to	 use	 their	 kind	 of	 natively	 staked	 ETH.	 And	 at	 Eigenlayer,	 we	 have	 built	 a
system	 called	 Eigenpods	 that	 enables	 something	 like	 this,	 but	 it's	 fairly	 complex,	 so	 I
think	we	should	skip	over	it.

(11:19	-	11:31)

Okay,	but	it's	possible.	So	it's	possible	to	have	native	ETH	sort	of	deposit	here,	or	we	can
use	LSTs.	Either	way	works,	but	just	Eigenpods	is	just	a	lot	more	complicated.

(11:31	-	11:44)



Yeah,	it's	another	intermediary	that	makes	it	possible	to	accomplish	basically	the	same
thing,	 but	 with	 natively	 staking.	 I	 see,	 I	 see.	 Okay,	 so	 it	 seems	 like	 we	 got	 another
problem	solved	with	this	really,	really	simple	design	so	far.

(11:45	-	11:59)

Easy	 peasy.	 Easy	 peasy.	 All	 right,	 last	 part	 is,	 we	 see	 this	 problem	 again,	 right?	 Each
infrastructure	 provider	 needs	 to	 build	 its	 own	 token	 pool,	 and	 there's	 going	 to	 be	 a
million	token	pools	and	deposit	only	into	one.

(11:59	-	12:33)

How	can	we	share	or	do	pool	security	instead	of	fragmenting	them	once	again?	Yeah,	so
if	 we	 notice,	 the	 depositing	 and	 withdrawing	 is	 very	 simple.	 It	 should	 be	 pretty
straightforward	how	this	 is	going	 to	work	with	any	token	pool.	The	kind	of	unique	part
here	is	the	slashing,	right?	So	we	can	split	that	up	into	its	own	kind	of	abstraction	that	is,
we	could	call	it	perhaps	a	slasher.

(12:33	-	12:47)

It	defines	what	 it	 is	that	gets	you	slashed.	Yeah,	 it	does.	And	then	if	we	wanted	to,	we
could	add	kind	of	more	slashers	that	all	share	the	same	token	pool.

(12:49	-	13:08)

So	in	this	way,	we'd	be	basically	combining	several	kind	of	pieces	of	infrastructure	that
are	all	supported	by	the	same	token	pool.	I	see,	but	that	seems	a	little	bit	dangerous	if
any	slasher	can	slash	a	token	pool,	right?	So	how	can	the	staker	choose,	I	don't	want	the
malicious	one	to	slash	me.	Yeah,	good	point,	good	point.

(13:09	-	13:31)

Yeah,	so	the	staker,	we	could	add	to	the	token	pool,	staker	defines	kind	of	what	slashing,
what	slashers	are	allowed	to	slash.	It's	sort	of	like	enrolling,	right?	Whenever	you	enroll
into	a	slasher,	you're	enrolling	to	that	commitment	per	se.	Yeah,	I	agree.

(13:31	-	13:39)

That's	a	good,	perfect.	So	now	let's	just	erase	this	part	since	we're	no	longer	having	the
slash.	Yes,	we've	moved	it	over.

(13:40	-	13:58)

Perfect.	 And	 then	 we're	 gonna	 have	 the	 slash	 function	 under	 a	 bunch	 of	 different
slashers.	So	just	to	recap,	now	the	infrastructure	developers	actually	do	not	need	to	build
out	 individual	 token	 pools	 anymore	 because	 they	 just	 need	 to	 build	 out	 their	 slashing



provision.

(13:59	-	14:25)

And	the	staker	will	stake	into	one	token	pool	and	enroll	into	different	slashing	conditions.
Yeah,	and	with	that	you	can	basically,	through	restaking,	you	can	achieve	pool	security
now.	And	this	simple	design,	even	though	it	seems	very	crazy,	it's	actually	the	minimum
viable	design	for	Agiler,	right?	This	achieves	all	the	goals	we	set	out	to	do.

(14:25	-	14:33)

This	is	not	a	product	yet	because	we	still	have	a	lot	of	work	to	do.	A	lot	of	problems	to
solve.	But	actually,	we	are	done	with	the	MVP	version	of	Agiler.

(14:33	-	14:51)

Yeah,	 basic	 requirement.	 Awesome.	 In	 the	 remaining	 of	 the	 article	 or	 the	 video,	 what
we're	 gonna	 do	 is	 we're	 gonna	 slowly	 improve	 this	 design	 to	 make	 it	 into	 an	 actual
product	that	people	can	use	as	stakers	and	infrastructure	developers	can	come	and	join
this	platform.

(14:54	-	15:02)

Okay,	okay,	okay.	Now	let's	try	to	make	Agiler	more	of	a	product.	And	there's	gonna	be
product	questions	we	need	to	solve.

(15:02	-	15:40)

The	very	first	one	is,	this	is	similar	that	all	proof-of-stake	protocols	run	into,	which	is	the
people	 who	 provide	 capital	 or	 the	 stakers	 are	 different	 from	 people	 who	 are	 actually
running	the	softwares,	right?	The	stakers	doesn't	operate.	And	to	solve	that,	we	need	a
separate	 entity,	 but	 we	 need	 to	 think	 about	 how	 do	 we	 actually	 work	 those	 separate
entities	together?	So	yeah,	there's	plenty	of	professionals	or	semi-professionals	who,	so
run	software,	we	term	them	operators.	Okay.

(15:41	-	16:20)

But	 in	 trying	 to	 have,	 so	 ideally,	 we'd	 have	 stakers	 delegate	 to	 operators	 who	 do	 the
actual	operation.	But	again,	we	have	this	problem	where	really	we	need	a	platform	that
help	these	two	sides	meet	each	other.	So	we'll	 introduce	another	smart	contract,	again
on	Ethereum,	 that	we	 term	 the	delegation	manager	because	 it	handles	 the	delegation
between	staker,	delegating	the	staker's	stake	to	the	operators.

(16:21	-	16:30)

Precisely.	Okay.	And	the	first	thing	that	this	is	going	to	need	is	the	ability	for	a	staker	to



actually	delegate	to	an	operator.

(16:31	-	16:35)

Yep.	With	the	veto,	and	perhaps	we	can	draw	an	arrow.	Uh-huh.

(16:35	-	17:03)

Staker	there.	So	what	happens	when	the	staker	delegates	to	a	specific	operator?	Does	it,
you	know,	basically,	yeah,	how	does	 that,	what	sort	of	 things	you're	 tracking	here?	So
here,	basically	we're	tracking,	we're	taking	the	stake	that	we	have	tracked	in	the	token
pool	 and	 communicating	 to	 the	 delegation	 manager	 how	 much	 is	 staking.	 So	 the
delegation	manager	understands	how	much	is	delegated	to	each	of	these	operators.

(17:03	-	17:15)

I	 see,	 yeah,	 that	 makes	 a	 lot	 of	 sense.	 But	 also	 because,	 you	 know,	 the	 operator	 are
running	the	services,	does	it	still	make	sense	for	a	staker	to	enroll	into	different	slashers?
Not	really.	Yeah.

(17:15	-	17:42)

Yeah,	so	we	can	erase	enroll	here,	and	instead	think	about	enrollment	happening	at	the
delegation	 manager	 level.	 And	 while	 we're	 at	 it,	 you	 know,	 people	 might	 not	 want	 to
serve	these	applications	forever,	so	we	can	add	an	exit	function	that	allows	operators	to
disenroll	from	any	slasher.	I	see.

(17:42	-	17:54)

So	 basically	 we	 need	 to	 remove	 this	 arrow	 because	 we're	 no	 longer	 tracking	 it	 there.
Good	point,	and	move	it	down	to	here.	Yep,	100%.

(17:54	-	18:15)

Perfect,	and	now	 I	 think	with	 this	design,	we	sort	of	 separated	 the	 role	of	 stakers	and
operators	by	 introducing	 the	 role	of	 the	operators	and	also	 the	delegation	manager	 to
facilitate	 the	 delegation	 between	 the	 two.	 Yeah,	 we	 split	 up	 these	 user	 groups	 and
provided	a	way	for	them	to	interact	with	each	other.	And	I	said,	yep,	perfect.

(18:16	-	18:28)

And	now	we	have,	we	achieved,	you	know,	the	stakers	doesn't	need	to	run	a	bunch	of
auction	softwares.	Okay,	now	we	figured	out,	you	know,	the	separation.	There's	another
problem.

(18:29	-	18:42)



We	are	only,	for	the	staker,	right,	we're	only	allowed	right	now	to	stake	one	token.	That
means	if	we	want	to	stake	another	token,	we	need	to	launch	this	entire	thing	once	again.
How	do	we	solve	that?	Well,	that	seems	easy	enough.

(18:45	-	19:08)

No,	so	we	have	this	kind	of	single	token	pool.	It	would	be	nice	if	we	had	a	bunch	of	token
pools	that	each	kind	of	split	out	and,	you	know,	each	managed	their	own	token.	And	we
could	combine	these	with	kind	of	one,	you	can	think	of	it	almost	as	like	a	puppeteer.

(19:08	-	19:15)

At	each	one	of	these	token	pools,	it's	just	like	a	little	puppet	that	gets	dragged	up.	I	see.
So	we	could	call	these	the	token	pools.

(19:16	-	19:40)

This	could	be	the	token	manager,	the	token	pool	manager	that	just	kind	of	takes	care	of
coordinating	all	of	these	token	pools	together	inside	it.	I	see.	So	the	other	way	to	sort	of
understand	it,	correct	me	if	I'm	wrong	here,	is	you	can	also	understand	the	token	pools
as	LP	manager,	where	they	instantly	deposit	the	tokens	into	a	token	pool.

(19:41	-	20:01)

For	example,	I	deposit	LST,	goes	into	LST	token	pool,	and	then	the	token	manager	tracks
how	 many	 shares	 I	 have	 over	 the	 total	 shares	 of,	 you	 know,	 the	 old	 LST	 I've	 been
depositing.	Yeah,	 like	a	 liquidity	provider	LP	accounting	model	we're	using	here	for	the
smart	contract	side.	Yeah,	that's	a	good	description.

(20:02	-	20:26)

And	using	that	kind	of	share-based	accounting	also	means	that	we	can	handle	things	like
rebasing	tokens	or	tokens	where	kind	of	the	yield	from	each	staking	perhaps	is	captured
in	a	variety	of	ways	and	unify	them.	I	see.	That	also	means	we	need	to	modify	a	little	bit
on	the	stake	and	withdrawal	function.

(20:26	-	20:35)

We	basically	have	to	say,	I	mean,	it's	still	a	stake,	but	instead	of	just	calling	it,	we	have
to	pass	it	in	which	token	we're	staking.	Yeah,	you	want	to	pass	in	a	little	more.	I	see.

(20:35	-	20:42)

That's	 the	 same	 for	 the	 withdrawal	 part?	 Yeah,	 of	 course.	 Perfect.	 And	 now	 we	 can
support	more	tokens.

(20:42	-	20:53)



Any	dump.	Oh	yeah,	actually,	yeah,	that's	absolutely	correct.	Okay,	next	up	we're	going
to	talk	about	expanding	the	infrastructure	design	you	can	have	under	this	infrastructure.

(20:53	-	21:28)

One	thing	we	didn't	really	talk	about	is	how	does	this	withdrawal	actually	work,	right?	In
this	 entire	 new	 design,	 after	 we	 added	 delegation	 manager	 and	 the	 slashers,	 the
withdrawal	is	going	to	first	check,	okay,	which	is	the	staker	delegated	to,	and	it's	going
to	 check,	 is	 this	 operator,	 what	 is	 this	 operator	 is	 currently	 enrolled	 in,	 and	 it's	 the
enrolled	 services	 saying	 he	 is,	 right,	 there's	 multiple	 steps	 here.	 So	 this	 is	 a	 potential
problem	that	could	happen.	For	example,	 if	 I'm	an	operator	who's	also	a	staker	at	 the
same	time,	this	is	an	attack	I	can	carry	out.

(21:30	-	21:54)

This	 is	 a	 time	 axis,	 and	 this	 is	 first	 where	 I	 commit	 something	 malicious,	 meaning
someone	can	submit	evidence	to	the	slashing	contract	and	slash	my	funds.	Right	at	the
same	 block,	 or	 right	 after	 it,	 what	 I	 do	 is	 I	 call	 the	 withdrawal	 function.	 Because	 I
submitted	so	close	before	anyone	can	submit	 the	evidence	 to	slash	me,	 I	 can	actually
get	my	funds	out.

(21:54	-	22:01)

So	at	this	point,	I	have	zero	funds.	At	this	point,	I	have	100%.	At	this	point,	I	have	0%.

(22:01	-	22:18)

And	somewhere	down	in	the	future,	someone's	going	to	submit	a	slashing	function,	call
the	 slashing,	 and	 maybe	 this	 is	 only	 500	 milliseconds.	 Actually,	 that's	 not	 possible
because	we	have	the	block	time	limit.	Go	with	the	idea.

(22:19	-	22:52)

Even	 though	 it's	 very,	 very	 small,	 you	cannot	 let	 this	happen.	So	 to	prevent	 this	 from
happening,	we	have	to	 introduce	a	concept	called	unbonding.	 Jeff,	you	want	to	explain
further?	 Yeah,	 so	 rather	 than	 allowing	 people	 to	 instantaneously	 withdraw,	 as	 in	 that
timeline	 that	 you	 just	 drew,	 and	 erased,	 and	 erased,	 we	 will	 have	 people	 queue	 a
withdrawal,	and	later,	they	will	complete	the	withdrawal.

(22:53	-	23:29)

We	could	talk	about	queuing	and	completing	a	withdrawal.	And	so	an	unbonding	period
really	just	forces	a	delay	between	starting	the	withdrawal,	initiating	it,	or	queuing	it,	and
completing	it.	And	so	what	the	process	will	look	like	is	the	staker	will	start	the	withdrawal
process,	queue	a	withdrawal,	will	decrease	the	amount	that	is	delegated	to	the	operator
who	 the	 staker	 is	 delegated	 to,	 and	 later,	 after	 the	 unbonding	 period,	 the	 staker	 will



complete	the	withdrawal.

(23:29	-	23:42)

And	at	the	time	when	they're	completing	the	withdrawal,	we'll	check	to	make	sure	that
enough	time	has	elapsed.	And	again,	that	the	operator	has	not	been	slashed	by	any	of
these	slashing	contracts.	I	see.

(23:42	-	24:12)

My	question	here	is,	when	you	say	the	unbonding	period,	I'm	assuming	each	infoculture
developer	would	have	their	own	unbonding	period.	Where	is	that	unbonding	period	track
in	this	entire	thing?	And	what	 if	 I'm	an	operator,	 I'm	enrolled	 in	different	 infrastructure
with	different	unbonding	periods?	Yeah,	so	good	question.	Okay,	so	we	could	say,	 let's
say	one	of	these	has	an	unbonding	period	of	five	days,	another	has	an	unbonding	period
of	six	days,	and	another	has	an	unbonding	period	of	seven	days.

(24:13	-	24:40)

So	when	you	as	an	operator	enroll	in	each	of	these,	it	will	look	to	see	if	the	new	slashing
contract	that	you're	enrolling	in	has	a	longer	unbonding	period.	Because	ultimately	what
we	care	about	is	the	longest	unbonding	period	of	all	of	the	slashing	contracts	that	you've
enrolled	in.	So	basically	you	would	track	a	variable	here,	sort	of	like	a	mapping	between
each	operator	and	how	long	the	unbonding	period	is.

(24:40	-	24:54)

Yes,	and	the	length	of	it	will	be	the	longest	of	all	of	the	slashing	contracts	that	they've
enrolled.	I	see,	and	that	will	be	updated	every	time	you	enroll	and	every	time	you	exit.	If,
you	know,	you	trigger	the	changing	condition.

(24:54	-	25:02)

Absolutely,	yeah.	So	if	you're	enrolled	in	all	three	of	these,	give	an	example,	seven	day
unbonding	period.	I	see,	okay.

(25:02	-	25:39)

So	one	thing	you	mentioned	at	the	end	is	when	you	complete	a	withdrawal,	you	need	to
check	 with	 each	 slashing	 contract.	 Is	 that	 correct?	 Yeah,	 so	 because	 it's	 this	 kind	 of
delegated	model,	when	you're	withdrawing,	you	need	to	check	that	kind	of	none	of	these
contracts	has	slashed	the	operator	that	you	delegated.	So	you	could	imagine	looking	up
kind	of	 every	 slashing	 contract	 that	 the	operator's	 enrolled	 in	 and	 calling	 each	one	of
them	and	saying,	oh	hey,	is	the	operator	slashed?	Yes,	no.

(25:39	-	25:51)



If	 they	are	slashed,	 then	you	can't	complete	 the	withdrawal,	but	 if	 they	are,	or	 if	 they
aren't	 slashed,	 then	 you	 can	 complete	 the	 withdrawal.	 But	 if	 the	 operator	 is	 slashed,
then	you're	not	allowed.	I	see.

(25:52	-	26:13)

I	know	you're	a	pretty	big	fan	of	gas	optimization.	Does	that,	you	know,	this	design	make
you	 like	squeeze?	Yeah,	 so	anytime	 that	you're	 talking	about	kind	of	 iterating	over	an
array	 or	 doing	 the	 same	 thing	 a	 bunch	 of	 times,	 it's	 not	 necessarily	 ideal.	 Also,	 as	 a
developer,	maybe	you	don't	want	to	handle	all	of	these	interactions.

(26:13	-	26:32)

You	want	to	just	abstract	away	just	the	smallest	amount	of	kind	of	slashing	functionality.
Oh,	that's	interesting.	So	you're	saying	the	staker,	like	the	token	manager	is	made	for	a
staker,	 the	delegation	manager	 is	made	 for	 the	operator,	 and	 you,	 like	 right	 now,	 the
slasher	is	developed	by	the	infrastructure	developer,	but	it	has	to	interact	with	all	these
different	things.

(26:33	-	26:45)

Instead,	 if	 there's	 like	 another	 entity	 that	 they	 just	 interact	 with,	 that	 would	 be	 a	 lot
easier	for	them	to	develop.	Yeah,	so	we	could	imagine	doing	something	kind	of	similar	to
what	we	did	with	all	these	token	pools.	Wait,	let's	actually	erase	this.

(26:46	-	27:08)

Sure.	Yeah,	move	it	out	over	here.	So	we	could	imagine	we	move	kind	of	these	slashers
over	 here,	 and	 we	 introduce	 a	 new	 kind	 of	 coordinating	 contract	 that	 is	 the	 slasher
manager.

(27:08	-	27:28)

And	it	really	serves	to	just	kind	of	coordinate	all	of	these	slashers	together	and	do	these
system	 interactions	 itself.	 I	 see.	So	basically	 the	 slasher	manager	will	 basically,	 again,
acts	like	a	mapping.

(27:28	-	27:38)

Okay,	for	this	operator,	it's	a	slash,	yes	or	no.	Yeah,	it	basically	is	just	slash.	I	see.

(27:39	-	27:50)

And	 that	 would	 also	 mean	 that	 when	 you're	 doing	 the	 withdrawal,	 you	 don't	 need	 to
iterate	 through	all	 the	slasher	contracts.	You	 just	need	 to	check	once	with	 the	slasher
manager	and	you'll	be	good	to	go.	Precisely.



(27:50	-	28:04)

Awesome.	I	think	other	benefits	I	see	in	this	is	because	a	lot	of	stakers	are	really	small
players.	So	if	we	can	cut	down	gas	costs	for	them	as	much	as	we	can,	we	can	encourage
more	people	to	participate	in	the	system	as	well.

(28:04	-	28:09)

Absolutely.	Ideally,	we'd	like	EigerLayer	to	be	usable	by	everyone.	Yeah,	awesome.

(28:09	-	28:29)

I	think	that	basically	concludes	our	entire	product	pipeline.	How	can	we	make	EigerLayer
a	product	 that's	currently	used	today?	And	the	diagram	you	see	today	 is	basically	 just
Baby.	And	this	design	fits	very	closely	with	our	current	architecture.

(28:30	-	28:37)

Some	 variables'	 names	 are	 different.	 A	 lot	 of	 it	 is	 using	 as	 illustrative	 purposes.	 The
entire	idea	is	close	to	home.

(28:37	-	28:45)

Would	you	say	that's	the	case?	Yeah,	very	much.	Awesome.	Thank	you	so	much,	guys,
for	tuning	in	for	this	episode.

(28:45	-	29:02)

We're	gonna	spend	a	little	time	after	this	just	to	walk	through	some	other	bonus	parts.
But	 now	 we've	 actually	 covered	 the	 entire	 thing,	 how	 you	 could	 have	 invented
EigerLayer.	If	you	wanna	learn	more,	feel	free	to	click	on	the	link	below	in	the	description
to	go	on	our	research	forum	for	more	discussion.

(29:03	-	29:06)

Thank	you	very	much.	All	right.	Welcome	to	the	bonus	section.

(29:07	-	29:44)

The	bonus	section	is	titled,	Who's	Trusting	Who?	The	reason	why	we	made	this	section	is
because,	as	you	can	see,	 the	diagram	before	was	 really	complicated,	a	 lot	of	different
moving	parts,	and	we	talked	about	it	relatively	quickly.	We	wanna	expand	the	dedicated
section	just	to	explain	the	cost	of	something	baked	in	to	the	entire	system.	And	to	get
started,	 just	 to	 recap,	 we	 have	 the	 stakers	 who	 are	 staking	 tokens,	 delegating	 the
operators	 to	 run	 these	 services,	 and	 then	 combine	 and	 provide	 a	 service	 that	 the
infrastructure	developers	are	building.



(29:45	-	30:01)

Cool?	 So,	 who's	 trusting	 the	 infrastructure	 developers?	 Okay,	 let's	 go	 that	 direction.
Who's	 trusting	 the	 infrastructure	 developer?	 Let's	 think	 about	 it.	 Okay,	 what	 could	 an
infrastructure	developer	screw	up?	The	simple	example	is	just	code	was	buggy.

(30:02	-	30:18)

The	worst	case	is	your	code	is	buggy,	and	it	caused	a	mass	slashing	event.	Yeah,	very
bad.	Who	will	be	slashed?	So,	the	operator	would	commit	the	bug	or	do	something	bad,
and	the	operator	will	be	slashed.

(30:18	-	30:31)

But	because	 the	stakers	are	delegating	 their	 stake	 to	 the	operators,	 the	staker	will	be
slashed	as	well.	There's	a	very	heavy	trust	assumption	on	the	infrastructure	developers
to	write	good	code.	But	that	is	always	very,	very	difficult.

(30:31	-	30:46)

So,	 in	 the	 meantime,	 we	 introduce	 a	 mutually	 trusted	 community	 with	 very	 limited
power.	We	call	it	the	veto	committee.	What	the	veto	committee	can	do	is	to	reverse	this
accidental	or	buggy	slashing	events.

(30:46	-	31:08)

So,	 instead	 of	 trusting	 the	 infrastructure	 developers	 for	 writing	 good	 code,	 all	 we're
trusting	 is	 the	 veto	 committee.	 If	 the	 bug	 was	 messy,	 veto	 committee	 can	 reverse	 a
slashing	 event.	 Right	 now,	 veto	 committee,	 you	 can	 think	 of	 it	 as	 a	 mutually	 trusted
party,	the	old	three	sides	of	the	table.

(31:09	-	31:20)

Okay,	and	who's	trusting	the	operators	in	this?	Great	question.	I	would	say	the	operator
is	the	one	with	the	most	amount	of	trust	placed	in	the	system.	This	is	not	just	with	the
eigenlayer.

(31:21	-	31:42)

This	is	with	any	proof-of-stake	system	that	people	do	delegation.	So,	if	the	operators	is
malicious	 or	 try	 to	 screw	 other	 people	 up,	 it	 can	 cause	 the	 stake	 pair	 to	 lose	 all	 the
stake.	At	the	same	time,	it	can	screw	the	infrastructure	developers	by	providing	a	really
bad	service	for	the	infrastructure	developer	customers.

(31:43	-	32:03)

For	example,	 if	 the	 infrastructure	developer	 is	an	Oracle,	 the	operator	can	keep	giving



out	really,	really	bad	prices,	and	the	Oracle	itself	will	be	buggy	and	not	useful	at	all.	So,
there's	a	very	heavy	trust	assumption	placed	on	the	operators.	And	once	again,	this	 is
not	just	for	eigenlayer.

(32:03	-	32:18)

This	 is	 a	 general	 proof-of-stake	 weakness	 we	 see.	 Okay,	 what	 about	 stakers?	 Who's
trusting	 them?	Oh,	 this	 is	 a	 great	 question.	 If	 you	 think	 about	 this	 entire	 thing,	 in	my
view,	I	don't	think	anyone	is	trusting	the	stakers.

(32:18	-	32:44)

And	the	reason	why	no	one	is	trusting	the	stakers	because	their	trust	are	being	replaced
by	what	I	call	E	plus	E.	Basically,	eigenlayer	smart	contract	on	top	of	Ethereum.	Because
of	 this	 program,	 basically	 they're	 making	 these	 programmable	 commitments,	 the
operators,	infrastructure	developer	do	not	need	to	trust	on	the	stakers.	If	they	commit	to
what	they're	doing,	then	why	no	one	needs	to	trust	the	staker	because	of	eigenlayer's
infrastructure?


